
 

6. STATISTICAL MODELS FOR META-ANALYSIS 
 
6.1. Overview 

Whenever we perform a meta-analysis, we do so within the framework of a 
statistical model.  The model reflects the way the studies were sampled, and 
it determines how we can generalize from the results.  Typically, we would 
choose among the following three models.   
 
6.1.1. Random effects 

The random-effects model applies when we identify a universe of studies, 
sample studies from that universe, and then use the results of our analysis to 
generalize to that universe. The word random reflects the assumption that the 
studies in our analysis are a random sample of all possible studies in this 
universe.  The word effects is in the plural because the effect (the impact of 
the treatment) is assumed to vary from study to study. 
 
6.1.2. Fixed effect (singular)  

The fixed-effect (singular) model applies when all studies are based on the 
same population and are identical to each other in all material ways.  The 
results of our analysis apply to this specific population, and cannot be 
generalized beyond that.  The word effect is in the singular because all studies 
share a common effect size, and the word fixed is assumed to mean common.  
This model is sometimes called the common-effect model. 
 
6.1.3. Fixed effects (plural)  

The fixed-effects (plural) model applies when we identify a specific set of 
studies that we want to include in our analysis.  Like the random-effects 
model, we assume that the effect size varies from one study to the next.  
Unlike the random-effects model, these studies are not seen as having been 
sampled from a larger universe.  Rather, these are the only studies we care 
about.  We will report statistics for the studies in the analysis, but will not 
generalize beyond them.  The word effects is in the plural because the true  
effect size varies from study to study.  The word fixed reflects the fact that 
these studies have not been sampled from a larger universe, but rather have 
been identified as being the only studies of interest. 
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4 STATISTICAL MODELS FOR META-ANALYSIS  

While most researchers are familiar with the random-effects model and 
the fixed-effect (singular) model, relatively few are aware of the fixed-effects 
(plural) model.  This model is discussed by (Hedges & Vevea, 1998) and also 
by Rice, Higgins, and Lumley (2017).  

These issues are summarized in Table 1, which provides a framework 
for many of the issues discussed below. 

 
Table 1 | Sampling frame for statistical models 

 Random 
effects 

Fixed 
effect 

Fixed 
effects 

Sampling frame 
 Studies sampled from different populations •   
 Studies sampled from one population  •  
 Studies selected from different populations   • 
Inference to 
 Universe from which studies were sampled •   
 Specific population in the analysis  •  
 Specific studies included in the analysis   • 
Advantages 
 Can generalize to a larger universe •   
 Can assess heterogeneity in effect size •   
Requirements 
 Enumerate the universe of relevant studies •   
 Studies are representative of the universe •   
 Reliable estimate of τ2 •   

 
6.1.4. Three textbook cases 
 
The following three examples serve as textbook cases for each of the three 
models.  In each example one model clearly applies, the analysis meets all the 
relevant assumptions of the model, and the model will work as intended.  The 
computations are given in Appendix I. 
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Figure 2 | Random effects| Confidence interval 60 points wide 

 

 

 
Figure 3 | Fixed effect (singular) | Confidence interval 10 points wide 

 
 

 
Figure 4 | Fixed effects (plural) | Confidence interval 10 points wide 
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6.1.5. Random effects 
 
Suppose that we want to estimate the mean score for all high schools in a large 
city.  We draw a random sample of 20 schools from this universe of schools, 
and then draw a random sample of 50 students within each of these schools 
(Figure 2).  The 20 circles in the plot represent the true scores for the 20 
schools that were included in our random sample.  The key factor that makes 
this a random-effects analysis is the normal curve that has been superimposed 
on the plot.  This curve reflects the fact that we have defined a universe of 
populations from which we will be sampling and to which we will be making 
an inference.  We report that the mean for this universe is 500, with a 
confidence interval of 470 to 530.  Following the convention introduced in 
section 5, this is labeled [B] since it is based on a random-effects analysis and 
applies to the universe of all comparable populations.   
 
6.1.6. Fixed effect (singular)  
 
Suppose that we want to estimate the mean score for a specific school, which 
has a selective admissions policy.  We draw 20 random samples of 50 students 
each from this school (Figure 3).  The inference is to this school only.  We 
report that the mean for this school is 600, with a confidence interval of 595 
to 605.  Following the convention introduced in section 5, this is labeled [A] 
since it is based on a fixed-effect analysis and applies only to the one school 
included in the analysis.  It should be clear that the mean in this school tells 
us nothing about the mean for all schools in the system.   

The reason that there appears to be only one circle on this plot is that we 
are plotting true scores rather than observed scores.  The true score is the 
actual mean for all students in the school.  While the observed score will vary 
from study to study, the true score is the same for all studies and so all twenty 
circles fall at precisely the same point. 
 
6.1.7. Fixed effects (plural)  
 
Suppose that we want to estimate the mean score for 20 schools that are under 
the control of one specific school board.  We identify these 20 schools by 
name, and then draw a random sample of 50 students within each of these 
schools.  In Figure 4, the circles reflect each of the twenty schools that are 
included in our analysis.  We report that the mean for this specific set of 
schools is 400, with a confidence interval of 395 to 405.  Following the 
convention introduced in section 5, this is labeled [A] since it is based on a 



     Statistical models − Overview 7 

fixed-effects analysis and applies only to the twenty schools included in the 
analysis.  The word fixed reflects the fact that these schools have been fixed 
(or designated) as the schools of interest rather than sampled from a larger 
universe.  The word effects is in the plural since each sample is estimating the 
effect (the mean) in a different school.  Here, we limit ourselves to a specific 
set of schools, and the results apply only to this set.  The key difference 
between this model and the random-effects model is the absence of a normal 
curve here.  Since these schools are not representative of all schools in the 
city, the fact that the mean in these 20 schools is 400 tells us nothing about 
the mean for all schools in the city. 
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6.2. Each model is appropriate for a specific inference 
 
The choice of a statistical model determines how much weight we assign to 
each study in the analysis, and this in turn affects the values computed for the 
summary effect size, the confidence interval, and other statistics.  It is useful 
to understand how the values computed under each model are appropriate for 
that model’s goals.  I provide a conceptual overview here.  For computational 
details, see Appendix I. 

6.2.1. How the model affects the confidence-interval width 
 
One goal of the meta-analysis is to compute a summary effect size, along with 
a confidence interval that tells us how precisely we have estimated this effect 
size.  The confidence interval for the summary effect will tend to be relatively 
wide under the random-effects model, and relatively narrow under the fixed-
effect and fixed-effects models.  In all three examples we had twenty studies 
with fifty students in each, yet the confidence-interval width varied.  The 
confidence interval was 10 points wide for the fixed-effect analysis (Figure 
3) and for the fixed-effects analysis (Figure 4).  By contrast, it was 60 points 
wide for the random-effects analysis (Figure 2). 
 The confidence interval is relatively narrow when we perform a fixed-
effect or fixed-effects analysis, because we are making an inference only to 
the studies in the analysis.  If we have a sufficient number of people in these 
studies, we will know the mean for these studies with relatively good 
precision.  By contrast, the confidence interval is wider under the random-
effects analysis because we are estimating the mean for the studies in the 
analysis and then using that mean to generalize to the universe of comparable 
studies.  The leap from the studies in the analysis to the universe of 
comparable studies entails additional sampling error, which results in the 
wider interval. 
 
6.2.2. How the model affects the estimate of the mean effect size 
 

Under the fixed-effect model the weights assigned to individual studies 
may vary substantially from each other, such that large studies may dominate 
the analysis and small studies may be essentially ignored.  By contrast, under 
the random-effects model the weights tend to be more moderate, such that 
large studies are less likely to dominate the analysis, and small studies are 
more likely to play a non-trivial role.  Again, this follows from the logic of 
the intended inference.  
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Consider the fixed-effect analysis where all twenty studies are based on 
random samples from the same school and our goal is to estimate the mean in 
that school.  If one study has very large sample size, we would want that study 
to dominate the analysis since all studies are estimating the same parameter 
(the school mean) but this study is doing so based on more information than 
the others.  Conversely, if one study had a very small sample size, we would 
want to essentially ignore that study, since other studies provide more precise 
information about the same parameter. 

By contrast, consider the random-effects analysis, where we are 
estimating the mean for all schools in a city.  If one school happened to have 
a very large sample size, we would not want that school to dominate the 
analysis.  While we might know the mean for that school precisely, there is 
no reason to think that the mean for this school is representative of the mean 
for all schools.  Conversely, if one school had a very small sample size, we 
would not want to ignore that school.  The information provided by this school 
may be imprecise, but it is the only information we have about this school, 
and so we need to use it when estimating the overall mean. 

The fixed-effects (plural) model uses the same weights as the fixed-
effect (singular) model, and so would allow a large study to dominate the 
analysis and small studies to be essentially ignored.  In effect, this means that 
we assign the same weight to each person rather than each study.  This would 
make sense if we wanted to estimate the mean for all students, rather than the 
mean for all schools. 
 
6.2.3. How the model affects our ability to address heterogeneity 
 
To this point I have been discussing how we estimate the mean effect size, 
and the precision of that estimate.  An equally important issue is the dispersion 
of true effects, which we call heterogeneity.  The random-effects model 
allows us to explore the dispersion of effects, while the fixed-effect (singular) 
model does not. 

Consider a case where all samples are based on the same school, and we 
use the fixed-effect model.  We cannot explore heterogeneity because, by 
definition, there is no heterogeneity in true effects.  Suppose that the true mean 
in this school is 600.  If we draw five samples from this school, the true mean 
for all five samples is 600 by definition.  While the observed effect size will 
vary from one sample to the next, heterogeneity refers to the true effect size, 
and that parameter is a constant.  

By contrast, consider the case where we want to make an inference to all 
schools in the city.  Imagine that we repeat the same analysis in three cities.   
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Figure 5 | Mean is 500 | Effects vary over 100 points 

 
 

 
Figure 6 | Mean is 500 | Effects vary over 200 points 

 
 

 
Figure 7| Mean is 500 | Effects vary over 300 points 
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In each city the mean score is 500, but the cities differ in the following 
way.  In one city, 95% of all school means all fall in the range of 450 to 550 
(Figure 5).  In the second city, 95% of all school means fall in the range of 
400 to 600 (Figure 6).  In the third city, 95% of all school means fall in the 
range of 350 to 650 (Figure 7).  While the mean is the same in all three cities, 
the three are obviously very different from each other.  If we want to describe 
the distribution of school means it is imperative that we report on the 
dispersion as well as the mean. 

The distinction between the fixed-effect model vs. the random-effects 
model in this context is clear.  The latter allows us to address heterogeneity 
while the former does not.  The issue is somewhat less clear when we apply 
the fixed-effects (plural) model.  In this case the effect size does vary across 
studies, but since the studies in the analysis are not seen as representative of 
any universe, there is no conceptual basis for discussing the heterogeneity in 
any larger universe.  For that reason, we generally avoid discussing the extent 
of dispersion when working with this model. 
 

6.2.4. How the model affects the meaning of the null hypothesis 
 
Typically, when we perform a meta-analysis, we pose the null hypothesis that 
the true effect size is zero, and then test that null hypothesis.  The meaning of 
the null hypothesis depends on the statistical model.  Consider a meta-analysis 
to assess the impact of an intervention, where an effect size of zero would 
mean that the intervention had no impact. 

Under the fixed-effect model we are working with one population, and 
the null hypothesis is that the true effect size in that population is zero.  If we 
reject the null hypothesis, we conclude that the intervention has an impact in 
this population.  We do not need to be concerned that the intervention is 
effective in some populations and not others, since there is only one 
population being discussed. 

By contrast, under the random-effects model the null hypothesis is that 
the mean effect size in the universe of comparable populations is zero.  If we 
reject the null hypothesis, we conclude that the intervention is effective on 
average, but we must still ask about variation in the effect.  The intervention 
could be effective in some populations but ineffective (or even harmful) in 
others.   

Under the fixed-effects (plural) model we are working with multiple 
populations, and the null hypothesis is that the mean effect size in this specific 
set of populations is zero.  Since the mean depends on the specific mix of 
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populations included in the analysis, this null hypothesis is only relevant if 
we care about this specific set of studies, to the exclusion of all others.   
 

 
 

 

Summary 

Each statistical model is appropriate for a specific type of inference. 

The random-effects model applies when the studies in the analysis will be 
used to make an inference to a larger set of comparable populations.  We 
assume that the true effect size varies from study to study.  Our goal is to 
estimate the mean effect size in this universe of comparable populations, 
and also the dispersion of effects about that mean. 

The fixed-effect (singular) model applies when all studies in the analysis 
are based on the same population and identical to each other in all material 
respects.  Our goal is to estimate the common effect size in this population. 

The fixed-effects (plural) model applies when we want to make an 
inference only to the studies actually included in the analysis, and not 
generalize beyond them to any larger set of comparable studies.   



 

7. MISTAKES IN CHOOSING A STATISTICAL MODEL 
 
7.1. Overview 

Earlier, I introduced three statistical models for meta-analysis, as follows. 
 
• The random-effects model applies when the studies in the analysis are 

representative of a larger universe of studies.  Our goal is to make an 
inference to that larger universe. 

• The fixed-effect (singular) model applies when the studies in the analysis 
are all based on the same population.  Our goal is to make an inference to 
this one population. 

• The fixed-effects (plural) model applies when the studies in the analysis 
are based on multiple populations.  Our goal is to make an inference to 
this specific set of populations, and not to generalize beyond them. 

 
When the analysis is based on studies pulled from the literature, the random-
effects model is almost invariably the model that we should apply.  This 
model assumes that the studies in the analysis are representative of a universe 
of comparable studies, and that the results of the analysis will be generalized 
to that universe.  Critically, this model allows us to discuss not only the mean 
effect size, but also the dispersion in effect size across studies.  These are all 
key goals of the analysis. 

Researchers sometimes elect to use either a fixed-effect or fixed-effects 
model.  In sections 7.2 and 7.3, I explain why the use of these models is 
generally inappropriate when studies are pulled from the literature. 

While the random-effects model is generally the most appropriate model 
for analyses where studies are pulled from the literature, the model has 
limitations when used for this purpose.  Specifically, we will fail to meet some 
of the model’s assumptions, and we need to understand how this affects our 
ability to generalize from the results.  This is discussed in section 7.4. 
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7.2. Choosing between fixed effect (singular) and 
random effects 
 
7.2.1. Mistake 

When a published meta-analysis includes a discussion about the choice of a 
model, the choice being discussed is almost always the fixed-effect (singular) 
model vs. the random-effects model.  The decision to use one model or the 
other then focuses on the question of whether there is evidence that the true 
effect size varies across studies.  When a meta-analysis is based on studies 
pulled from the literature, especially when the studies assess the impact of an 
intervention, we can generally assume that the effect size varies, and the 
fixed-effect (singular) model is not a viable option.  Therefore, this approach 
(using a test to look for evidence of heterogeneity) is generally a mistake. 
 
7.2.2. Details 

It is entirely legitimate to choose between the fixed-effect (singular) model 
and the random-effects model based on whether the effect size is the same for 
all studies.  However, this decision must be based on our understanding of the 
sampling frame, and not on a statistical test. 
 
7.2.3. Cases where the fixed-effect (singular) model applies 

The textbook case of the fixed-effect (singular) model was the case where we 
wanted to estimate the mean score for all students in a school (section 6.1.6).  
We drew twenty random samples from that school and then performed a meta-
analysis on those studies.  In this case all studies are estimating the same 
parameter.  If the mean for all students in the school is 600, then the true effect 
size for the first study (the effect size that we would see if there was no 
sampling error) is 600, the true effect size for the second study is 600, and so 
on for all studies.  By definition, all studies are estimating the same value. 

Another case where the fixed-effect model (singular) would apply is the 
case where a drug company draws ten random samples from one population 
and performs the identical clinical trial with each sample.  Again, by 
definition, all studies are estimating the same parameter. 

By contrast, when a meta-analysis is based on studies that are pulled 
from the literature, the situation is very different, as explained below. 
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7.2.4. Cases where the random-effects model applies 

In papers where researchers choose between the fixed-effect (singular) and 
the random-effects model, the researchers make the decision based on a test 
of significance.  They elect to use the fixed-effect (singular) model as the 
default, and then perform a significance test for heterogeneity.  If the test 
result is not statistically significant, they assume that all studies are estimating 
the same parameter and stay with the fixed-effect model.  If the test result is 
statistically significant, they assume that the true effect size varies, and switch 
to the random-effects model.  This approach is misguided because the 
conclusion that all studies are (or are not) estimating the same parameter must 
be based on our understanding of how the studies were sampled, rather than 
a test of statistical significance.   

When studies are pulled from the literature, and especially when these 
are studies that assess the impact of an intervention, each study is based on a 
unique population, and the impact of the intervention will vary from one 
population to the next.  A drug might be more effective (or less effective) in 
populations that are older, or where the patients are generally healthier, or 
exercise more, or have better medical care, or live in a colder climate, and so 
on.  An intervention to improve students’ scores might be more effective (or 
less effective) in populations where students are more motivated, or have 
better resources, or have better reading skills, or have a shorter school year, 
and so on.   

Additionally, the details of the protocol will typically vary from study to 
study.  The dose of a drug, the duration of the intervention, the attention to 
detail, the training of the staff, may vary.  The group that serves as a 
comparator may vary.  The instrument that is used to measure outcome may 
vary.  The study design might vary.  The impact of these factors on the effect 
size might be substantial or it might be trivial, but in general it will not be 
zero.  Once it is not zero, the fixed-effect model is no longer applicable (see 
for example (Borenstein, Hedges, Higgins, & Rothstein, 2010; J. P. Higgins, 
2008; J. P. Higgins, Thompson, & Spiegelhalter, 2009; Lorenc et al., 2016)).  

 
7.2.5. In context 

In the examples of the school and the case of a drug company we should 
choose the fixed-effect model because logic tells us that the true effect size is 
the same in all studies.  Conversely, when studies are pulled from the 
literature, we should choose the random-effects model because common sense 
tells us that the true effect size varies across studies. 
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The assertion that when studies are pulled from the literature, the true 
effect size will vary across studies, is not absolute.  If the intervention really 
had no relation at all to the outcome, the true effect size would be the same 
(zero) in all studies.  However, the assertion is correct in the vast majority of 
cases.   
 
7.2.6. What difference does it make? 
 
If we can use either our understanding of how the studies were sampled (on 
the one hand) or a significance test (on the other), why is it imperative that 
we use the former rather than the latter?  There are two key reasons. 

The first reason is that statistical tests are intended for instances when 
the true state of affairs is unknown.  If we know the true state of affairs, we 
should use that knowledge. 

The second reason is that the test for heterogeneity will sometimes lead 
to the wrong model.  When we should be using the random-effects model the 
test may not be statistically significant, which would lead us to use the fixed-
effect model.  Conversely, when we should be using the fixed-effect model, 
the test will sometimes yield a statistically significant result, leading us to use 
the random-effects model. 
 
7.2.7. Examples 

Following are some examples where researchers (incorrectly) used a test for 
heterogeneity to choose a statistical model, and others where the researchers 
(correctly) relied on their understanding of the intended inference to choose a 
statistical model. 
 
7.2.8. Example | PTSD in parents of children with chronic illness 
 
Post-traumatic stress disorder (PTSD) is a mental-health disorder that 
develops in some people following a traumatic event.  While we generally 
associate this with soldiers and combat, it can also develop in parents whose 
children suffer from a chronic illness. Cabizuca, Marques-Portella, 
Mendlowicz, Coutinho, and Figueira (2009)  looked at the incidence of PTSD 
in mothers of children with chronic illnesses (Figure 8).  The reviewers 
elected to use the fixed-effect model by default, and switch to the random-
effects model only if a test provided evidence that the prevalence of PTSD 
varied across studies.   
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The studies were conducted in different countries.  They included parents 
whose children suffered from an array of different illnesses.  The time from 
the onset of illness to the examination varied across studies.  The methods 
employed to diagnose PTSD varied by study.  Therefore, common sense tells 
us that the prevalence of PTSD will vary across studies.  Indeed, common 
sense also suggests that a key part of the analysis should be to determine how 
much the prevalence varies.  On this basis, we should be using the random-
effects model. 
 

 
Figure 8 | Prevalence of PTSD in mothers of children with chronic illness 

 
As it happens, the test for heterogeneity was statistically significant, and 

the reviewers did adopt the random-effects model.  This allowed them to 
assess dispersion, and it turns out that the prevalence of PTSD varies from 
5% in some populations to 47% in others, as indicated by the prediction 
interval [C]. 

Still, this example shows why we should use common sense rather than 
a significance test to select a statistical model.  Had the test failed to yield a 
significant p-value, the reviewers would have stayed with the fixed-effect 
model, and assert that the prevalence of PTSD was precisely the same in all 
studies.  This would subvert a key goal of the analysis (to assess 
heterogeneity).  Also, it would defy common sense, since it is simply not 
plausible that the prevalence would be identical across such a disparate array 
of populations. 

Importantly, the possibility that this approach can lead to the use of the 
fixed-effect model is a real problem.  If we have only a few studies, it is 
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entirely possible to have this amount of dispersion and still have a non-
significant p-value for the test for heterogeneity.  That is the case in the next 
example. 
 
7.2.9. Example | Preoperative statin therapy 
 
Liakopoulos et al. (2008)  looked at the impact of preoperative statin therapy 
on the incidence of stroke in patients undergoing cardiac surgery (Figure 9). 
The effect size index is the odds ratio, with values less than one indicating 
that the treatment reduced the risk of stroke. 
 

 
Figure 9 | Impact of preoperative statins | Odds ratio < 1 favors treatment 

 
The correct approach would be to choose a statistical model based on our 

understanding of the sampling frame.  In this analysis, each study was based 
on a unique population, and we can assume that the impact of therapy will 
vary by population.  Additionally, the studies varied in the type of procedure 
(isolated CABG, isolated valve, or both) as well as the statin type, the dose, 
the follow-up period, and the methodological quality.  One can assume that 
the impact of the intervention will not be precisely the same in all studies, and 
therefore, the fixed-effect model does not apply. 

Nevertheless, the reviewers elected to use the fixed-effect model by 
default, and switch to the random-effects model only if the test for 
heterogeneity yielded a p-value under 0.10 and/or the I2 value was greater 
than 50%.  Neither of these criteria was met (the p-value was 0.105 and I2 was 
45%) so the reviewers applied the fixed-effect model. Figure 9 shows the 
results under this model, and also the results that we would have obtained 
using the random-effects model.   
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The results of the fixed-effect analysis [A] can be summarized as 
follows.  The impact of the intervention is precisely the same for all studies 
included in the analysis.  The effect is statistically significant so we can reject 
the null hypothesis and conclude that the treatment is effective in all these 
studies.  This common effect is estimated as an odds ratio of 0.736. 

The results of the random-effects analysis [B] can be summarized as 
follows.  The impact of the intervention varies from one population to the 
next.  The prediction interval [C] tells us that in some populations, the 
treatment reduces the odds of a bad outcome by as much as 68%, while in 
others it increases the odds of a bad outcome by as much as 70%. The mean 
effect size is not statistically significant, but in the presence of this much 
variation the mean is of little relevance.  If the treatment is helpful in some 
cases and harmful in others, we need to understand where the treatment works 
and where it does not. 

In sum, the fixed-effect analysis tells us that the treatment works, and 
that it works consistently.  The random-effects analysis tells us that the 
treatment effect is stronger in some populations than in others, and in fact may 
be harmful in some cases. These estimates are based on only six studies, and 
we would want to gather additional data before reaching any firm conclusions.  
Nevertheless, it should be obvious that the random-effects approach yields a 
more plausible framework for understanding the data. 
 
7.2.10. The correct approach 

In the preceding examples the reviewers employed a test of significance to 
choose a statistical model, which is a mistake.  By contrast, in the following 
cases the researchers elected to use the random-effects model a priori, which 
is the correct approach. 
 
7.2.11. Example | Interventions to promote physical activity 
 
Michie, Abraham, Whittington, McAteer, and Gupta (2009)  ran a meta-
analysis to synthesize studies that assessed the impact of interventions to 
promote better physical activity and eating habits.  The studies included 
various interventions and various outcomes.  They write “A random effects 
model (DerSimonian & Laird, 1986) was used in the analyses to incorporate 
the assumption that the different studies are estimating different, yet related, 
treatment effects.” 
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7.2.12. Example | Dropout rate in adult psychotherapy 
 
J. K. Swift and Greenberg (2012)  looked at the dropout rate in adult 
psychotherapy.  They write “Given the wide range of studies that have been 
included in this review (the way the studies were conducted, the interventions 
that were used, the clients that were treated, etc.), a random-effects model was 
used in the calculation of the overall dropout rate and all testing of moderators 
and covariates.” 
 
7.2.13. Example | Impact of preference in psychotherapy 
 
Joshua K. Swift, Callahan, Ivanovic, and Kominiak (2013)  looked at the 
relationship between psychotherapy preference (matching patients to the type 
of therapy they prefer) and the utility of the therapy.  They write “A random-
effects model allows the true effect to vary from study to study (Borenstein et 
al., 2009) and was deemed more appropriate for our analyses given that 
significant variability was expected between studies based on how the studies 
were conducted and the differences in samples that were used in each study.”  
 
7.2.14. Example | Behavior-change techniques for asthma patients 
 
Denford, Taylor, Campbell, and Greaves (2014)  looked at the utility of 
behavior-change techniques for helping asthma patients.  They write “Given 
the heterogeneity in intervention content, we decided in advance to pool data 
using a random effects meta-analysis (J. P. T. Higgins & Green, 2011)”.  
 
7.2.15. Example | Emotional congruence with children 

McPhail, Hermann, and Nunes (2013)  looked at the relationship between 
emotional congruence with children and sexual offending against children.  
They write, “For the meta-analyses, we used a random-effects model (REM).  
This model is desirable over a fixed-effects model (FEM) when conducting 
meta-analysis with ‘real-world’ or applied data (Field, 2003; Hunter & 
Schmidt, 2004; Overton, 1998).  We assumed there was variability beyond 
sampling error in the current sample of effect sizes (Lipsey & Wilson, 2001; 
Raudenbush, 2009) due to the applied contexts of the data collection, the 
convenience samples used in most studies in the sample, and our intent to 
generalize these meta-analytic findings beyond the current sample of studies.”  
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7.2.16. Testing for heterogeneity when the analysis is based on one 
population 
 
To this point I showed that when we are working with multiple populations, 
we should generally use the random-effects model, and that choosing the 
model based on a test could lead (incorrectly) to the fixed-effect model.  The 
same idea holds true (in reverse) when all studies are based on one population 
and are identical in all material respects.  In this case we should be using the 
fixed-effect model, and choosing the model based on a test could lead 
(incorrectly) to the random-effects model. 

Consider the fictional analysis introduced in section 6.1.6, where our 
goal is to estimate the mean effect size for a specific school, and we draw 
twenty random samples from that school.  In this case the fixed-effect model 
applies since all studies are estimating the same value.  Suppose we tested for 
heterogeneity and the test yielded a significant p-value. Indeed, if we use a 
criterion alpha of 0.10 when testing for heterogeneity, we would reject the 
null hypothesis in 10% of such analyses.  How would we interpret the test?  
Would we conclude that the mean score for this school varies?  This is not 
only wrong, but is actually impossible since the mean for the school is a 
constant. 
 
7.2.17. Constraints of the fixed-effect model 

In sum, when studies are pulled from the literature, we can generally assume 
that the true effect size varies across studies, and that therefore the fixed-effect 
model does not apply. 

There is a second reason we should not use the fixed-effect model in this 
kind of analysis.  The fixed-effect model allows us to make an inference only 
to the single population included in the analysis.  Therefore, the researcher 
would need to explain what this population is and then limit the inference to 
this one population.  If we intend to generalize the results to comparable 
populations, we must use the random-effects model. 
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Summary 

If all studies are based on the same population, we should be using the 
fixed-effect model. If studies are based on multiple populations, we 
should be using the random-effects model. 

The choice of a statistical model must be based on our understanding of 
the sampling frame, and not on a test of statistical significance.  If we 
don’t know which of these applies then we are simply playing with 
numbers, and have no business running the analysis at all. 
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7.3. Choosing between fixed effects (plural) and 
random effects 
 

7.3.1. Mistake 

When researchers consider which model to use for a meta-analysis, they 
generally assume that the two options are the fixed-effect model and the 
random-effects model.  In fact, there is a third option, the fixed-effects model 
(where the word effects is in the plural).    
 
7.3.2. Details 

The fixed-effect (singular) model and the fixed-effects (plural) model are 
computationally identical to each other, but conceptually different.  They 
apply the same weights to each study and yield the same results, but reflect 
two different views of the sampling process and intended inference. 
 
7.3.3. The fixed-effect model 

The fixed-effect (singular) model applies when all studies are estimating the 
identical parameter.  Operationally, this would mean that all studies are based 
on the same population and are identical to each other in all material ways.  
As discussed in the prior section, when studies are pulled from the literature, 
we do not meet these requirements, and this is rarely a valid option. 
 
7.3.4. The fixed-effects model 

The fixed-effects (plural) model applies when we intend to make an inference 
to the studies actually included in the analysis, and not generalize from those 
to any other studies.  There are no assumptions about how these studies have 
been sampled or selected for inclusion in the analysis.  There is no assumption 
that these studies are similar to each other in any way.   

When studies are pulled from the literature, we can elect to use this 
model, and it would be entirely valid.  While we can use this model in this 
case, it would generally be a bad idea to do so.  This model allows us to report 
the mean and confidence interval for the studies in the analysis, but not to 
generalize beyond these studies to any other studies.   
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The problem is that this is precisely what we would like to do.  When we 
publish a meta-analysis that says an intervention was (or was not) effective in 
our set of populations, we expect that readers will apply these results to their 
populations.  Under the fixed-effects model this is specifically prohibited.  
Indeed, this is the primary difference between the fixed-effects model and the 
random-effects model.  The latter allows us to generalize from the studies in 
the analysis to a universe of comparable studies.  The former does not. 
 
7.3.5. Where the fixed-effects model applies 

One might ask why we would ever want to use a model where the results 
cannot be generalized beyond the studies in the analysis.  In fact, there are 
several places where this model applies. 

This model applies in the textbook case introduced in section 6.1.7.  In 
that example we wanted to study the performance of students in the twenty 
schools that were under the control of a specific administrator.  We selected 
those twenty schools and included them in the analysis.  The results apply to 
those schools, and to those schools only.  We understand that the performance 
of students in these schools says nothing about other schools, and would not 
have any reason to generalize to other schools. 

This model also applies when the results of the analysis will be submitted 
as part of a proceeding to obtain approval for a new drug.  This model is the 
preferred model here is because it makes no assumptions about how the 
studies were sampled.  Additionally, if the requirement for approval is that 
the mean effect for the studies in the analysis is statistically significant, there 
is no need to generalize beyond these studies, and so the model works as 
intended. 
 
7.3.6. When studies are pulled from the literature 

By contrast, when applied to a meta-analysis where studies are pulled from 
the literature, the fixed-effects model gives the correct answer to the wrong 
question.  The answer is correct in that the mean and confidence interval will 
be accurate (subject to the usual sampling error) for the studies actually 
included in the analysis.  But, in the vast majority of cases, this is the wrong 
question since our interest is not limited to the studies actually included in the 
analysis.  Rather, we want to be able to generalize to comparable studies as 
well. 

In theory, it is possible for someone to publish a meta-analysis based on 
this model, and for readers to limit the results to the studies that are actually 
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included in the analysis.  On that basis, one could argue that this is a valid use 
of the model. 

However, in practice researchers and readers will rarely not honor this 
limitation.  The researchers may generalize from the studies in the analysis to 
what they see as comparable populations and methods.  Even if the 
researchers do limit their conclusions to the studies in the analysis, readers 
will invariably generalize as they see fit. 

For these reasons, we should generally avoid this model in favor of the 
random-effects model, which is discussed in the next section.  To be clear, the 
random-effects model does not solve all the problems outlined above.  
However, on balance, it is usually a better fit for the intended inference. 

 

 
 
 

 
 

 

 

 

 

 

 

Summary 

The fixed-effects (plural) model applies when the results will be used to 
make an inference to the studies in the analysis, but not generalized 
beyond them to any larger universe of comparable studies. 

When we perform a meta-analysis based on studies pulled from the 
literature, we almost invariably will generalize from these studies to other 
studies that we see as comparable, and therefore should generally not use 
this model. 
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7.4. Limitations of the random-effects model 
 
7.4.1. Mistake 

The random-effects model works as intended when a series of assumptions 
are met.  When we pull studies from the literature, we are likely to violate 
some of these assumptions, and we need to understand how this affects the 
meaning of the results.  Failure to address this issue is a mistake. 

7.4.2. Details 

When the analysis is based on studies pulled from the literature, the random-
effects model is almost invariably the model that should be used.  This model 
assumes that the studies in the analysis are representative of a universe of 
comparable studies, and that the results of the analysis will be generalized to 
that universe.  The computation of the confidence interval and the relative 
weight assigned to each study reflect these goals.  Critically, this model allows 
us to discuss not only the mean effect size, but also the dispersion in effect 
size across studies.  These are all key goals of the analysis. 

While we should be using the random-effects model for these analyses, 
we need to recognize that we will be violating some assumptions that are 
required for the model to work as intended.  We need to take this into account 
when we interpret the results. 
 
7.4.3. Assumptions of the random-effects model 
 
The random-effects model works well if the following assumptions are met. 

 
A. The universe to which we will making an inference is defined clearly and 

is the correct universe in the sense that it is relevant to policy.   
B. The studies that were performed are a random sample from that universe.   
C. The studies that we include in our analysis are an unbiased sample of the 

studies that were performed. 
D. The analysis includes enough studies to yield a reliable estimate of the 

between-study variance, τ2. 

 
These issues build on each other.  To get a reliable estimate of τ2 in the defined 
universe (D) we need to have a sufficient number of cases.  But we also need 
to assume that the studies in our analysis are a random sample of those that 
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were performed (C), that those performed are a random sample of the defined 
universe (B), and that this universe is well defined and relevant to policy (A). 

The quality of the evidence provided by a meta-analysis depends in large 
part on the extent to which that analysis meets these assumptions.  If the 
analysis meets these assumptions fully, the quality will tend be good.  To the 
extent that it fails to meet some (or all) of these assumptions, the quality is 
likely to be poor. 

This list does not include assumptions about the internal validity of the 
studies that were performed.  That is also critically important, but applies to 
all statistical models and is addressed elsewhere (see section on risk of bias, 
Appendix IV).  For the present discussion I will assume that the individual 
studies have low risk of bias, and our concern is whether we can generalize 
from these studies to the larger universe.  
 

7.4.4. A textbook case 
 
Consider the textbook case of the random-effects model introduced in section 
6.1.5, where all assumptions of the model are fully realized.  In this case we 
want to estimate the mean score on a specific math test for the 1,700 high 
schools in New York City.  We draw a random sample of 20 schools from 
this universe of schools, and then draw a random sample of 50 students within 
each of these schools.  This is depicted in Figure 10. 

 
 

Figure 10 | Random effects| Confidence interval 60 points wide 
 
The twenty circles in the plot represent the true scores for the 20 schools 

that were included in our random sample.  The key factor that makes this is a 
random-effects analysis is the normal curve that has been superimposed on 
the plot.  This curve reflects the fact that we have defined a universe of 
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populations from which we draw the samples and to which we will be making 
an inference.  

In this example we can report that the statistical inference is of high 
quality since the assumptions have all been met.  To wit – 
 
A. The universe to which we will making an inference is defined as all public 

high schools in New York City.  This is clear and unambiguous. 
B. The studies that were performed are a random sample from that universe.  

We know that is the case, because we had a list of all 1,700 high-schools 
in the system and used a random process to select these twenty. 

C. The studies that we include in our analysis are an unbiased sample of the 
studies that were performed.  We know that because we know that twenty 
studies were performed, and all twenty of them are included in our 
analysis. 

D. We have enough studies in our sample to yield a reliable estimate of the 
between-study variance.  

 
7.4.5. When studies are pulled from the literature 
 
By contrast, consider what happens in a typical analysis when studies are 
pulled from the literature.  I will use the ADHD analysis as an example.   

Castells et al. (2011)  conducted a meta-analysis of seventeen studies to 
assess the impact of methylphenidate on adults with Attention Deficit 
Hyperactivity Disorder (ADHD).  Patients with this disorder have trouble 
performing cognitive tasks, and it was hypothesized that the drug would 
improve their cognitive function.  Patients were randomized to receive either 
the drug or a placebo, and then tested on measures of cognitive function.  The 
effect size was the standardized mean difference between groups on the tests. 

The analysis is shown in Figure 11, and it should be obvious that the effect 
size is smaller in some studies and larger in others.  For purposes of this 
discussion, assume that the effect size tends to be lower in populations that 
employ a low dose of the drug, and higher in populations that employ a high 
dose of the drug. 

We can use this example to highlight the differences between the textbook 
case and the case where studies are pulled from the literature, and show how 
this affects the utility of the random-effects model. 
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Figure 11 | Methylphenidate for adults with ADHD | Effect size > 0 favors treatment 
  

A. We would like to think that the universe to which we are making an 
inference is well-defined.  We might think that the universe is defined 
adequately by the inclusion/exclusion criteria for the review, but that is 
rarely the case.  These criteria will not entirely define the populations and 
methods to be included/excluded, since there are numerous factors that 
could influence the magnitude of the effect and we cannot enumerate all 
of them.  Additionally, to properly define the universe we would need to 
know not only (for example) that we will include studies where the dose 
is between 30 mg. and 80 mg. but also what proportion of studies will be 
using each dose in this range.  

B. We would like to think that the studies in the analysis are a random 
sample of all studies in the universe, but that is almost never the case.  
Researchers who perform primary studies do not design these studies 
using a random process.  Rather, they tend to design studies that work 
well for their purposes and that employ populations that are relatively 
easy to work with.  The universe defined in (A) might include equal 
numbers of all doses, but the studies actually performed might favor 
higher doses, since these studies tend to show larger effects. 

C. We would like to think that the studies included in the analysis are a 
random sample of all studies that had been performed, but for various 
reasons (including publication bias, discussed in section 11) the studies 
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included in the analysis might be a biased subset of the studies that had 
been performed. 

D. We would like to think that we are able to estimate the between-study 
variance reliably, but that might not be the case.  We need as many as 
twenty studies to obtain a reliable estimate of this variance, and will often 
have substantially fewer studies in our analysis.  Additionally, we will be 
estimating the between-study variance for studies in the analysis, but this 
may be different than the value for the studies in the intended universe.  
For example, suppose that the effect size tends to be higher for studies 
that employed a higher dose of the drug.  If the intended universe includes 
all doses from 30 mg. to 80 mg. but the studies in the analysis are 
primarily using between 60 mg. and 80 mg. the variance in our sample 
may be substantially smaller than the variance in the intended universe. 
 

7.4.6. A useful fiction 
 
In sum, when we apply the random-effects model to a meta-analysis where 
studies are pulled from the literature, we are engaging in a useful fiction.  The 
model is useful because it provides a framework for thinking about the mean 
effect size and the dispersion in effects.  But it is also something of a fiction 
because we are violating some (or all) of the assumptions that make the model 
work.  We need to think of how these violations affect the results. 

In the ADHD analysis the mean effect size was reported as 0.50.  But, 
given that the mean will shift left or right depending on the mix of populations 
in the analysis, what universe does the mean effect size represent?  We cannot 
say that it represents the mean in the universe that we described using 
inclusion/exclusion rules, since we have not met assumption (A), and do not 
have a sampling frame.  We cannot say that it represents the mean of relevant 
clinical populations, since the we have not met assumption (B).  For purposes 
of this discussion I will ignore the potential problems introduced by (C) and 
(D). 

To get around these violations, we use language.  We say that the results 
can be generalized to studies which are comparable to those in the analysis, 
without specifying what those studies are.  This verbal sleight-of-hand yields 
a definition that is accurate but not useful.  It is accurate since it is a tautology.  
The studies in the analysis are indeed comparable to studies that are 
comparable.  But it is not useful since it does not really tell us which studies 
are comparable.  That critical item is left to the judgment of the researcher or 
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the reader, and it may not be the same as we had intended when we planned 
the review. 

Given that there are limitations inherent in the analysis we need to 
approach the results logically and see what conclusions we can draw.  When 
we look at the entire distribution of effects, we can get a sense of the 
dispersion.  We can then look at the mean in that context.  

If there is only trivial heterogeneity among the universe of comparable 
studies, if follows that (a) the mean provides a useful estimate of the effect 
size in any given study and (b) the estimated mean will be reasonably stable 
regardless of which studies we happen to include in the analysis. 

By contrast, if there is substantial heterogeneity among the universe of 
comparable studies, if follows that (a) the mean does not provide a useful 
estimate of the effect size in any given study and (b) the estimated mean will 
vary depending on which studies we happen to include in the analysis. 

For example, in the ADHD analysis there are some combinations of 
factors that will lead to effects as low as 0.05, and others that will lead to 
effects as high as 0.95. Given the amount of heterogeneity, we should 
understand that the mean could shift substantially based on the particular mix 
of populations and methods (for example, dosage) included in the analysis.  
As such, the mean is not very robust. 

At the same time, given the amount of heterogeneity, the mean is not 
terribly important.  In other words, the mean is not very useful as a predictor 
of the effect size in any single population.  Rather than focus on the mean, we 
need to identify factors that tell us where the effect size will be closer to 0.05 
and where it will be closer to 0.95.  Since the mean itself refers to a specific 
(and somewhat arbitrary) mix of populations, we should recognize that the 
test of the null hypotheses pertains to this specific mix of populations only.  
In that context, the test has limited value (see 10.3). 
 
7.4.7. Transparency 
 
If the violation of assumptions affects the kinds of conclusions we can draw 
from the analysis, we should explain what that means.   

Many readers assume that the mean in the analysis pertains to the mean 
in some clearly designated universe.  In the ADHD analysis we should make 
it clear that this is not the case.  The overall mean applies to the mix of 
populations and treatments included in the analysis, and would shift if we 
included a different mix of studies.   

Many readers focus on the mean effect size, and pay little attention to 
the dispersion in effects.  In the ADHD analysis we should explain that the 
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true effect size in any given study could fall some distance from the mean.  
And, the mean itself could shift left or right, depending on the mix of studies 
included. 
 
7.4.8. A narrowly defined universe 
 
In almost any meta-analysis where studies address the impact of an 
intervention and are pulled from the literature, we will be violating some 
assumptions of the random-effects model, and therefore we need to think 
about the issues outlined above.  However, the severity of the violations (and 
the potential impact) depends on several factors.  Primary among these is the 
extent to which the universe is defined to encompass a very narrow set of 
studies or a more broadly defined set of studies.  The ADHD analysis includes 
a clinically diverse set of studies and effects, but other analyses will work 
with a narrowly defined set of criteria. 
 
A. When the universe is defined narrowly, it may be possible to provide a 

clear and comprehensive definition of the universe.  Experts may be able 
to identify all variables that could be related to the effectiveness of the 
drug and set strict inclusion/exclusion criteria for these.   

B. When the universe is defined narrowly, there is less concern that the 
studies being performed fall toward one end or the other of a distribution, 
since the entire distribution is narrow.  We do not need to be concerned 
that the dosage in our studies is higher than the typical dose in the universe 
since the universe is limited to one dose.  The same idea applies to the 
type of patient, the outcome, and so on.  

C. When the universe is defined narrowly, the potential impact of 
publication bias is less than it would be in other cases.  Publication bias 
can be based on random sampling error and also on heterogeneity in true 
effects.  If the true effects all fall in a narrow range, there is a natural limit 
to how much bias can be introduced based on the latter. 

D. The number of studies that we need to get a reliable estimate of the 
between-study variance (τ2) depends in part on how widely the true effects 
vary.  When the universe is defined narrowly and the within-study 
variance is small, we may be able to get a reliable estimate of τ2 with only 
a handful of studies (see section 9.9).  

 
In the Cochrane Database of Systematic Reviews, a substantial proportion 

of the meta-analyses report that the between-study variance is estimated as 
zero. While it is not likely that the true variance is actually zero (see section 
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7.2.4) it is possible that the true variance is trivial.  In that case, the issues 
outlined here for a narrowly defined universe would apply. 

Critically, the advantages associated with a narrowly defined universe 
only apply if the results are actually limited to that universe.  In practice, 
readers may generalize beyond that universe to other populations, variants of 
the intervention, and so on.   
 

7.4.9. In context 
 
Given the problems associated with using the random-effects model when 
studies are pulled from the literature, some have advocated for using the 
fixed-effects (plural) model instead.  While there are limitations to both 
models, there is a growing consensus that the random-effects model is 
generally preferable, for the following reasons.  

First, the random-effects model provides the correct conceptual 
framework for thinking about the analysis.  It explicitly acknowledges that 
we intend to make an inference to a wider set of studies.  Even if parts of the 
process are ambiguous (for example, deciding which studies are comparable) 
it is preferable to include them in the process so that we are clear about where 
the model is not reliable. 

Second, the random-effects model allows us to compute prediction 
intervals that tell us the range of true effect sizes that might be expected in 
comparable studies.  As explained earlier, this can be an essential element in 
our understanding of the results. 

Third, the fixed-effects model reports a confidence interval for the mean 
effect size for the studies in the analysis, and tends to be relatively small.  By 
contrast, the random-effects model reports a confidence interval for the 
universe of comparable studies, and tends to be wider.  If we will be making 
an inference to the universe of comparable studies, the random-effects 
interval is a better match for the intended inference. 

Fourth, under the fixed-effects model, large studies may dominate the 
analysis and small studies may be effectively ignored.  Essentially this means 
that we assign the same weight to each person rather than each study (see 
(Hedges & Vevea, 1998; Peto, 1987; Rice et al., 2017; "Tamoxifen for early 
breast cancer: an overview of the randomised trials. Early Breast Cancer 
Trialists' Collaborative Group," 1998).    As such, the random-effects model 
is a better match if our intent is to make an inference to all comparable studies.   

Fifth, while both models have limitations, the random-effects model has 
the potential to work well when we have enough data and a representative 
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sample of the intended universe.  As we approach these conditions, the model 
will yield a useful estimate of the mean effect size and dispersion of effects in 
that universe.  By contrast, the fixed-effects model is designed to make an 
inference only to the studies actually included in the analysis, and not to the 
universe of comparable studies. This will not change as the quality and 
quantity of the data improves. 
 
7.4.10. Extreme cases 
 
For the reasons discussed above, the random-effects model should generally 
be the model we use when studies are pulled from the literature.  This model 
is likely to work well enough when the universe is defined narrowly.  It may 
also work well enough when the universe is defined broadly but we have a 
reasonable number of studies, so we can get a general sense of the dispersion.   

However, if the universe is defined broadly and we have only two or 
three studies (for example), the model becomes untenable.  In this case we 
need to choose among several options. 

 
• We can apply the random-effects model and explain that the estimates are 

unreliable.  It would be very useful to apply the Knapp-Hartung 
correction (see section 7.5).  This will substantially expand the width of 
the confidence interval, and thus clarify the extent of the uncertainty.  The 
drawback to this approach is that the interval may be so wide that we learn 
almost nothing from the analysis. 

• We can apply the fixed-effects (plural) model, and make it very clear that 
the results apply only to the studies in the analysis, and cannot be 
generalized beyond them to any other studies.  The drawback to this 
approach is that readers will tend to ignore the caveat, and generalize as 
they see fit. 

• We can display the forest plot without a summary effect (Poole & 
Greenland, 1999). The problem with this approach is that readers may 
construct an even more flawed summary of their own.  
   
None of these options is a good one, and regardless of the option chosen, 

it is imperative to be transparent about the limitations of the analysis. 
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Summary 

The random-effects model works as intended if all assumptions are met.  
Specifically, it will work as intended if we (A) enumerate a universe of 
all possible studies, (B) draw a random sample of studies from that 
universe, (C) ensure that the studies in the analysis are a representative 
sample of the studies performed, and (D) have a sufficient number of 
studies to yield an accurate estimate of the between-study variance. 

When studies are pulled from the literature, we are likely to violate some 
(or all) of these assumptions.  Typically, (A) it is not entirely clear what 
studies are included in the intended universe, (B) the studies actually 
performed are not a random sample from the intended universe, (C) the 
studies included in the analysis might not be representative of those 
actually performed, and (D) we may not have a sufficient number of 
studies to yield an accurate estimate of the between-study variance. 

Therefore, when we say that the results apply to studies which are 
comparable to those in the analysis, it may not be clear which studies are 
actually comparable to those in the analysis.  This will be true especially 
when the universe is defined broadly, and the effect size varies 
substantially across studies. 
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7.5. Knapp-Hartung adjustment 
 
7.5.1. Mistake 

Researchers generally compute a confidence interval and p-value using the Z-
distribution.  In most cases it would be preferable to apply the Knapp-Hartung 
adjustment. 
 
7.5.2. Details 

Traditionally, the confidence interval for the mean is based on the Z-
distribution, which yields a relatively narrow interval.  When we use the 
random-effects model it would be better to use the Knapp-Hartung adjustment 
(sometimes called the Hartung-Knapp-Sidik-Jonkman adjustment), which 
yields a wider (and more accurate) confidence interval (J. P. Higgins & 
Thompson, 2004; IntHout, Ioannidis, & Borm, 2014; Jackson, Law, Rücker, 
& Schwarzer, 2017; Knapp & Hartung, 2003; Sidik & Jonkman, 2002).  

The adjustment includes two components.  First, it modifies the standard 
error of the mean.  Second, it multiplies the standard error by a factor based 
on the t distribution rather than the Z distribution.  It is always a good idea to 
use this adjustment, since the adjusted interval is more accurate.  However, it 
is especially important to use this adjustment when there are a small number 
of studies in the analysis and the between-study variance is non-trivial.   

Consider an analysis where the effect size index is the standardized mean 
difference (d) and the standard error of the mean is 0.10. Table 2 shows how 
the confidence interval is affected when we use t rather than Z.  Without the 
correction, the confidence interval width is around 0.40 regardless of the 
number of studies.  With the correction, the width increases as the number of 
studies decreases.  When the number of studies is 30, 10, 4, and 2 the interval 
width is approximately 0.41, 0.45, 0.64, and 2.54.  Equivalently, the width is 
increased by a factor of 1.04, 1.15, 1.62, and 6.48.  As noted above, there is a 
second part to the adjustment which involves the standard error, and which 
may widen the interval even further. 

While this discussion has been focused on the width of the confidence 
interval, the same issues apply to tests of the null hypothesis (see Appendix 
V). 
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Table 2 – Impact of using t-distribution on the confidence interval width 

 Number 
studies 

Critical 
value 

Lower 
Limit 

Upper 
Limit Width 

Ratio 
t: Z 

       
Z-Distribution n/a 1.960 0.304 0.696 0.392 1.00 

t-distribution 

100 1.984 0.302 0.698 0.397 1.01 
30 2.045 0.295 0.705 0.409 1.04 
20 2.093 0.291 0.709 0.419 1.07 
10 2.262 0.274 0.726 0.452 1.15 
5 2.776 0.222 0.778 0.555 1.42 
4 3.182 0.182 0.818 0.636 1.62 
3 4.303 0.070 0.930 0.861 2.20 
2 12.706 −0.771 1.771 2.541 6.48 

 
While there is a consensus among statisticians that we should always 

apply this adjustment when we use the random-effects model, it is used only 
rarely in practice, for several reasons. 

 
• Most researchers are not aware of this adjustment. 
• The adjustment is not always available in software.   
• The adjustment may yield a very wide confidence interval, and may move 

the p-value to a non-significant range, which makes it less attractive to 
researchers who may have a vested interest in reporting a statistically 
significant result. 

 
In an effort to address the second of these items, the adjustment is being 

added as an option in software, and hopefully will be adopted more widely in 
the near future.  It is possible to use this adjustment now in CMA (Appendix 
V).  IntHout et al. (2014) show how the adjustment can be implemented in 
Excel. 
 
7.5.3. Limitations of the Knapp-Hartung adjustment  

For the random-effects model, the Knapp-Hartung adjustment always 
yields better coverage than the non-adjusted value, and so it should always be 
used. However, it works better under some circumstances than others 
(IntHout et al., 2014). Details are provided in Appendix V. 

The adjustment makes it more likely that the confidence interval will 
include the true mean for studies comparable to those in the analysis.  
However, it cannot adjust for the possibility that the studies in the analysis are 
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not representative of the intended universe.  For example, suppose that the 
universe is defined as studies that employed a dose between 30 mg and 80 
mg, and the true mean effect size for these studies is 0.50.  However, most 
studies in the analysis employed a dose between 60 mg and 80 mg, and the 
true mean effect size for these studies is 0.70.  The K-H adjustment makes it 
more likely that the confidence interval will include the value of 0.70.  It 
cannot adjust for the fact that this is different than the mean in the intended 
universe. 

Ironically, when the adjustment is most needed (when we have a small 
number of studies) the impact of the adjustment may be so large that the 
estimate of the mean effect size will be uninformative.  In the example 
presented in 7.5.2, with twenty studies the interval would have a width of 0.42 
but with two studies would have a width of 2.54.  The latter interval is so wide 
that it tells us nothing of real value.  While this is unfortunate, it represents 
the true state of affairs.  When the between-study variance is non-trivial, an 
estimate of the mean effect size for the universe of comparable studies, based 
on two studies, is not reliable. 

 

 

Summary 

The confidence interval for the mean effect size in random-effects 
analysis is too narrow when based on the Z-distribution.  It would be better 
to use the Knapp-Hartung adjustment, which yields a wider (and more 
accurate) interval.  The adjustment applies both to the confidence interval 
and to the test of the null hypothesis for the mean effect. 

The magnitude of the adjustment depends on the number of studies in the 
analysis.  When the analysis includes many studies, the adjustment will 
tend to be relatively modest.  When the analysis includes only a few 
studies, the adjustment will tend to be substantial.  
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7.6. Meta-analysis in legal applications  
 
7.6.1. Mistake 

In analyses where the random-effects model cannot be used, researchers 
sometimes assume that they must use the fixed-effect (singular) model.  In 
fact, they have the option of using the fixed-effects (plural) model, which is 
likely to be a better fit for the data. 
 
7.6.2. Details 

The key advantage of the random-effects model is that it allows us to 
generalize from the studies in the analysis to the universe of comparable 
studies.  However, as discussed earlier, it is not entirely clear what studies are 
comparable to those in the analysis.  If our goal is to publish the analysis, we 
may be willing to accept some ambiguity about which studies are comparable.  
However, when the analysis is being used as part of a legal proceeding, this 
ambiguity is not acceptable.  Therefore, it may be necessary to apply the 
fixed-effects model.  Here, the results apply only to the studies in the analysis, 
and we make no assumptions about how these studies came to be included in 
the analysis nor about what studies might be comparable to them. 
 
7.6.3. Fixed-effect model (singular) vs. fixed-effects model (plural) 
 
Researchers using a meta-analysis for a legal application sometimes choose 
the fixed-effect (singular) model because they are not aware of the fixed-
effects (plural) model.  In fact, the latter may be a much better option (Rice et 
al., 2017).   

In those cases where we really expect that all studies are estimating the 
same parameter, the fixed-effect (singular) model is appropriate.  But when 
the studies are not estimating the same parameter, there is no need to suggest 
that they are.  One can simply report the same statistics, based on the fixed-
effects model.  The fixed-effects (plural) model applies when we intend to 
make an inference to the studies in the analysis, and not generalize beyond 
them to any universe of comparable studies.  There is no assumption that the 
studies are estimating the same parameter. 

The two models are conceptually different from each other, but 
computationally identical to each other.  They use the same weights and yield 
the same results. 
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Summary 

When the analysis will be submitted to a regulatory agency or as evidence 
in a legal proceeding, the random-effects model is generally not tenable 
since it requires that we make assumptions about the sampling process, 
and about what studies are comparable to those in the analysis.  Therefore, 
for these purposes we generally use the fixed-effect or fixed-effects 
model.  These models allow us to make an inference only to the studies in 
the analysis, and we make no assumptions about what other studies might 
be comparable. 
  
The fixed-effect and fixed-effects model use the same weights.  We use 
the singular label (effect) when all studies are based on the same 
population and identical to each other in all material respects.  We use the 
plural label (effects) otherwise.  The numbers are the same in both cases. 
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7.7. Putting it all together 
 
When a meta-analysis is based on studies pulled from the literature, the 
random-effects model is almost invariably the model that should be used.  
This model assumes that the studies in the analysis are representative of a 
universe of comparable studies, and that the results of the analysis will be 
generalized to that universe.  The computation of the confidence interval and 
the relative weight assigned to each study reflect these goals.  Critically, this 
model allows us to discuss not only the mean effect size, but also the 
dispersion in effect size across studies.  These are all key goals of the analysis. 

However, there are typically problems in using this model.  The model 
works properly if we have a clear understanding of the universe to which we 
will be making an inference, if the studies actually performed are a random 
sample from this universe, if the studies in the analysis are an unbiased sample 
of the studies that were actually performed, and if we have a sufficient number 
of studies to estimate the various parameters reliably.  When studies are pulled 
from the literature, we may fall short on many of these assumptions.   

An important issue here is the extent to which the effect size is consistent 
or varies across studies.  If the true variation across studies is trivial our 
estimate of the mean will be robust, since it will fall within a narrow range 
regardless of the mix of populations included in the analysis.  By contrast, if 
there is substantial variation in the true effect size, the mean effect size will 
depend on the specific mix of populations included in the analysis. Critically, 
this all depends on the true variation in effects, not the estimated variation. 
As discussed in section 9.9, the estimate may not be reliable. 

Researchers sometimes assume there is such a thing as a correct model, 
and that their task is to identify that model.  We need to recognize that there 
may be no model that will yield an entirely correct answer.  Rather, each 
model has limitations.  This idea was expressed by (Poole & Greenland, 1999) 
when they wrote “We see either type of summary [based on a fixed-effect or 
a random-effects model] as having only a minor role in a well-done meta-
analysis, unless all the studies are very similar in their methods, in their 
populations at risk, in their exposure contrasts, and in their results. 
Unfortunately, random-effects summarization seems to have become one of 
the statistical methods, like significance testing, that tend to be applied to 
epidemiologic data ritualistically and without much thought for important 
features of the data they might conceal.” 

No model is able to serve as a talisman that will magically yield the 
correct answer.  Rather, we need to decide which model works best for the 
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intended inference, and then consider the limitations of that model when 
interpreting the results. 
 



 

8. ISSUES AND MYTHS ABOUT STATISTICAL MODELS 
 
8.1. Overview 
 
In section 7, I discussed which issues we should consider when choosing a 
statistical model for a meta-analysis of studies that are pulled from the 
literature. In practice, researchers sometimes take account of other issues 
when deciding which model to use.  For the most part these issues should not 
play a role in the choice of a model.  However, since researchers often ask 
about these issues, I address them here.  These include the following. 
 
• Some researchers believe that the random-effects model assigns equal 

weight to all studies, or too much weight to small studies. 
• Some researchers perform an analysis using both fixed-effect and 

random-effects models and then compare the results. 
• Researchers sometimes suggest that we should use the random-effects 

model because it is more conservative than the fixed-effect model. 
• Researchers sometimes suggest that we should use the fixed-effect model 

because it has better statistical power than the random-effects model. 
 
In general, I will refer to the fixed-effect (singular) model in this discussion, 
since this is the model most researchers have in mind when they address these 
issues.  However, the discussion applies to the fixed-effects (plural) model as 
well.

43 
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8.2. Random-effects model assigns equal weight to all 
studies 
 
8.2.1. Mistake 

Some researchers have said that they used the fixed-effect model because the 
random-effects model gives equal weight to all studies, and they want to give 
more weight to larger studies.  This is a mistake. 
 
8.2.2. Details 

The relative amount of weight assigned to each study is important because it 
affects the estimate of the overall mean as well as the estimate of 
heterogeneity.  In general, we would want to assign more weight to larger 
studies, and if it were true that the random-effects model assigned equal 
weights to all studies, this would be a cause for concern.  However, this 
assertion is simply incorrect. 

For example, Figure 12 shows the impact of an intervention to reduce 
alcohol abuse in students (Smedslund et al., 2017).   For purposes of this 
illustration, the studies are sorted based on the weight assigned to each, from 
low to high. 

The two columns at right show the relative weight assigned to each study 
under either model.  Under the fixed-effect model [D], the relative weights 
vary from a low of 0.42% to a high of 20.47%.  Under the random-effects 
model [E] the relative weights vary from a low of 1.09% to a high of 12.26%.  
So, the suggestion that the random-effects model assigns the same weight to 
all studies is incorrect.  Under the random-effects model, the weights do vary.  
They just do not vary as much as they vary under the fixed-effect model.  The 
ratio of the highest weight to the lowest weight under the fixed-effect model 
is around 50:1, and under the random-effects model is around 10:1. 

Toward the top, where the studies are small, the relative weights are 
higher in the right-hand column (random) than the left (fixed).  Toward the 
bottom, where the studies are large, the relative weights are lower in the right-
hand column (random) than the left (fixed).  The principle is that the weights 
are more moderate under random effects.  The relative weight for small 
studies is pulled up, while the relative weight for large studies is pulled down. 
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It helps to review the reason we assign more modest weights under the 
random-effects model, and more extreme weights under the fixed-effect 
model.  Consider the fictional analyses shown in Figure 13. Each analysis is 
based on five studies, and each circle represents the true effect size in one 
study. 
 

 
 

Figure 13 | Large studies are more likely to be dominant under fixed-effect model 
 

The left-hand plot in Figure 13 corresponds to the fixed-effect model.  
All studies have been sampled from the same population, where the true effect 
size is 50 points.  Each circle represents the true effect size in one study, and 
by definition the true effect size for all the studies is 50.  One study [A] 
includes ten times as many people as the others, and so is able to estimate this 
parameter with one-tenth the error variance as the others.  It is assigned ten 
times as much weight as the others, as suggested by the area of the circle 
(which is proportional to the relative weight assigned to that study). 

The right-hand plot in Figure 13 corresponds to the random-effects 
model.  Studies have been sampled from a universe of populations where the 
mean effect is 50 points, but the true effect size in any population could be as 
low as 30 or as high as 70.  If one study happens to have a very large sample 
size, we do not want that study to dominate the analysis.  We might know the 
effect size for that population precisely, but this is only one population among 
many.  For example, one study [B] includes ten times as many people as the 
others.  This study is able to estimate the effect in this specific population with 
a relatively small amount of error but there is no reason to think that this study 
provides a precise estimate of the mean for all studies in the universe to which 
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we are making an inference.  Therefore, this study is assigned twice as much 
weight as the others (rather than ten times as much), as suggested by the area 
of the circle.   

The weights mentioned in these examples (ten-fold, two-fold) are only 
for purposes of illustration, and the precise weights will depend on any 
number of factors.  There will be cases where the weights under the random-
effects model are very similar for all studies, and there will be cases where 
the weights vary more than they did in this example.  The key point is that the 
weights are calibrated to match the intended inference.  If there is a case where 
the weights are similar for all studies, that is because those weights are the 
ones that will yield the best (most efficient) estimate of the mean effect size 
in that case.  See Appendix III for details. 

 

 

 

 

 

Summary 

The assertion that the random-effects model assigns the same weight to 
all studies is incorrect.  Rather, the weights are calibrated precisely to take 
account of both within-study and between-study variance. This is 
appropriate when our goal is to make an inference to the universe of 
comparable studies. 
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8.3. Random-effects model gives too much weight to 
small studies 
 
8.3.1. Mistake  

Small studies tend to have more of an impact on the summary effect-size 
under the random-effects model, and less of an impact under the fixed-effect 
model.  Researchers who are concerned that small studies may be of poor 
quality will sometimes switch to the fixed-effect model to minimize the 
impact of the small studies.  This is generally a bad idea. 
 
8.3.2. Details 

While the rationale for the weights is based solely on the goal of minimizing 
the variance due to sampling error, some researchers thought that they could 
capitalize on these weights to address an entirely separate issue.  Specifically, 
there is sometimes a concern that small studies may suffer from poor quality 
(Nuesch et al., 2010).   Some researchers proposed that if we switch to the 
fixed-effects model, these studies will be assigned smaller weights in the 
analysis, which would limit their impact. 

The idea of switching to the fixed-effect model to minimize the impact of 
poor-quality studies is a bad idea, for several reasons.  

 
• First, there is no reason to assume, as a matter of course, that small studies 

are of poor quality.  They may be of poor quality, but they also may be of 
equal (or better) quality than the larger studies. 

• Second, if we wanted to weight studies based on quality, we would want 
to use weights that reflected the quality of these studies.  To suggest that 
the fixed-effect weights somehow match the study quality is to assert (for 
example) that a study with 20 people has one-fifth the quality of a study 
with 100 people.  It would be hard to even say what that means, let alone 
argue that the ratio is correct.  

• Third, even if switching to the fixed-effect model somehow addressed the 
problem of poor studies being of low quality, it would still not be an 
acceptable solution, because if we make this switch, we are 
fundamentally changing the goals of the analysis.  The random-effects 
model allows us to generalize the results to the universe of comparable 
studies.  If we switch to the fixed-effects model, the results apply only to 
the studies in the analysis, and cannot be generalized beyond them.  
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Additionally, if we switch to the fixed-effect model we can no longer 
assess dispersion in the effects. 

Perhaps most importantly, this approach does not allow us to isolate the 
reason that the results change when we switch models.  If the results change 
when we switch models, we might assume that the change is due to the 
reduced the impact of small studies, but that might not be the case.  A change 
in results could be due to a reduction in the impact of small studies, but could 
also be due to other (unrelated) factors as in the examples below. 

In any event, there are other options that do allow us to address the 
possibility of poor quality in small studies, without switching to an alternate 
statistical model. 
 
• One option is to run an analysis comparing the effect size in small studies 

vs. large studies.  This would address the specific issue of sample size, 
rather than confounding it with a host of other issues.  

• Another option would be to run an analysis comparing studies with high 
risk vs. low risk of a specific bias (such as selective outcome reporting).  
This actually looks at the issue we care about, which is the risk of bias, 
rather than study size, which is treated as a surrogate for this bias.  

 
The following example illustrates these points. 
 
8.3.3. Example | Impact of GLP-1 mimetics on blood pressure 
 
Katout et al. (2014)  looked at the impact of GLP-1 mimetics on diastolic 
blood pressure (Figure 14).  They decided a priori to apply a random-effects 
model because they expected clinical heterogeneity in the effects.  Then, they 
ran a sensitivity analysis using a fixed-effect model to ensure that the initial 
results were not overly affected by the impact of the small studies.  The 
numbers that follow are based on our re-analysis of the data, and differ 
slightly from the original report due to rounding error. 

Based on the random-effects analysis [B], the mean effect size is −0.473 
mm Hg.  By contrast, based on the fixed-effect analysis [A], the mean effect 
size is −0.266 mm Hg.  The reviewers conclude that “The effect was more 
modest using fixed-effects model”.  This suggests that the effect size had been 
larger for the small studies, and when these studies are down-weighted, the 
effect size decreases.  However, a closer examination of the data shows that 
this is incorrect. 
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In Figure 14, the studies are sorted with the largest studies at the top and 
the smaller ones at the bottom. For purposes of this discussion I will divide 
the studies into ten large and seventeen small studies as labeled in column 
[G].  

Columns [D] and [E] show the relative weight assigned to each study 
under the fixed-effect and random-effects models.  Under the random-effects 
model [E] the seventeen small studies are assigned some 54% of the weight.  
By contrast, under the fixed-effect model [D] the seventeen small studies 
together are assigned less than one percent of the weight – in effect, the small 
studies have been removed from the analysis. 

As noted, the reviewers reported that when they switched to the fixed-
effect model the effect size became more modest.  The implication is that the 
small studies tended to have larger effects, and when these studies are 
(essentially) removed, the effect size based on the remaining studies shifts 
closer to zero.  While this narrative is plausible, it is not actually what 
happened here. 

In fact, the reason that the effect size shifted when we moved to the fixed-
effect model was not that small studies tended to have larger effects.  As we 
will see shortly, the mean effect size in the small studies was precisely the 
same as the mean effect size in the larger studies.  Rather, the reason that the 
effect size shifted to the right was because of a re-alignment of weights among 
the four largest studies.  Under the random-effects model, the two largest 
studies (together) [F] were assigned some 9% of the total weight.  By contrast, 
under the fixed-effect model these two studies were assigned some 43% of 
the total weight, and came to dominate the analysis.  As it happens, these two 
studies showed the treatment to be harmful (to the right of zero), and thus 
pulled the mean effect size toward the right.  This is the reason for the “more 
modest” effect.  So, the shift that the authors attributed to less influence of 
small studies was actually due to a shift of influence among the largest studies 
(which presumably were all of high quality). 

To this point, the example shows why it is a bad idea to switch to the 
fixed-effect model to down-weight the smaller studies.  Once we change 
models, weights may re-align in ways that we never intended.  As in this 
example, we may assume that the shift is due to one factor when it is actually 
due to something else entirely. 

Additionally, there are other lessons to be learned from this example. 
Under the random-effects model we would not reject the null hypothesis.  

Under the fixed-effect model we would reject the null hypothesis.  The reason 
we reject the null hypothesis under the fixed-effect model (even though the 
effect size is smaller under this model), is that when we adopt this model, we 
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omit the between-study variance from the error term, and the width of the 
confidence interval drops by 93%, from 1.50 units as indicated by line [B], to 
0.10 units as indicated by line [A].  The computation of this interval for the 
fixed-effect model is based on the assumption that all studies are being pulled 
from the same population, and as such is clearly incorrect.  The test of 
significance that allows us to reject the null hypothesis is also based on this 
assumption is therefore irrelevant.  

The drug shows substantial benefit in some populations (lowering BP by 
4.08), and substantial harm in others (increasing BP by 3.13) as indicated by 
line [C].  When there is this much variation in effect size, the key finding 
should be that the impact of GLP-1 mimetics on blood pressure varies 
substantially across populations.  Under the random-effects model this would 
be the message.  By contrast, if we switch to the fixed-effect model we are 
asserting that there is no variation in effect size, and therefore we cannot even 
discuss the variation.   

Ironically, the issue highlighted in the paper, that switching to the fixed-
effect model yielded a more moderate effect (and presumably showed that the 
effect size was larger in the small studies) is misleading in itself.  Technically, 
the effect size did shift by 0.21 points.  But given that the effect sizes range 
over 6.52 points, a shift of this size is so trivial as to be meaningless.  This is 
clear if we compare lines [B] vs. [A].  The point estimates for the two are so 
close that they appear to be the same. 

Fortunately, there are other ways of addressing the concern about small 
studies.  One option is to divide the studies into subgroups (Large vs. Small) 
and run an analysis to compare the effects in the two subgroups, as in Figure 
15.  This analysis isolates the factor of sample size, rather than conflating it 
with a host of unrelated issues.  In this example, the mean effect size is 
virtually identical in both sets of studies.  The mean effect size is −0.441 for 
the large studies [B1], and −0.444 for the small studies [B2].  

 
8.3.4. Study quality vs. risk of bias 
 

Since researchers often suggest switching to the fixed-effect model as a 
way of addressing the assumption that small studies tend to be of poor quality, 
I felt that it was important to address this issue.  However, I should note that 
the idea of classifying studies as having some level of quality has largely 
fallen out of favor.  Researchers now recognize that it is preferable to look at 
specific items (for example, improper randomization, selective reporting of 
results) that could lead to the study results being biased, rather than using a 
general assessment of quality. 
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Figure 15 | GLP-1 mimetics and BP | Large studies (top) and small studies (bottom) 

 
This is typically addressed in a risk of bias table (J. P. T. Higgins & 

Green, 2011).   This table is used to assess the likelihood that each study 
suffers from a particular kind of bias, such as inadequate controls for the 
randomization, or selective reporting of the outcome data.  This framework 
allows us to assess the potential for each type of bias (such as improper 
randomization protocols) in any study, rather than simply assuming that small 
studies suffer from these biases while larger studies do not (S. Greenland & 
O'Rourke, 2001; Juni, Witschi, Bloch, & Egger, 1999).  See Appendix IV for 
details. 
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Summary 

The idea of shifting to a fixed-effect model in order to down-weight small 
studies is a poor idea.  First, we should not assume that the small studies 
are of poor quality. Second, even if we did make this assumption, this 
approach is seriously flawed since it may affect the analysis in ways that 
we never intended.  Specifically, (A) it may re-align weights among the 
large studies, (B) it reduces the standard error, which may invalidate the 
test of significance and the confidence interval, and (C) it does not allow 
us to discuss variation in effects.   

In any event, if we are concerned about the quality of the small studies 
there are approaches which allow us to isolate this factor and address it 
directly. We can focus on specific types of bias rather than the ambiguous 
construct of study quality.  We can then address the potential impact of 
these specific biases, rather than conflate them with each other under the 
“small study” label.  
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8.4. Comparing results from the two models 
 
8.4.1. Mistake  

Researchers sometimes run an analysis using both fixed-effect and random-
effects models, and then compare the two results.  While some have advocated 
for this approach as a kind of sensitivity analysis, it is not clear what purpose 
this actually serves. 
 
8.4.2. Details 

When a researcher runs the analysis under both models, the intent is generally 
to see what would happen if we changed some element of the analysis.  For 
example, suppose that we are using a random-effects analysis, and we know 
that under this model small studies may have a substantial impact.  To see 
what would happen if we minimize the impact of the small studies, we re-run 
the analysis using a fixed-effect model.  It turns out that the results shift, and 
we assume this is because we have minimized the impact of the small studies. 

This is a variant of the prior issue (section 8.3).  There, researchers 
thought that the fixed-effect model might be better because it down-weighted 
small studies.  Here, they are comparing the two models without a specific 
rationale.  In either case, the problem is that when we shift models, we set in 
motion a whole array of changes, and some of these changes might be 
inconsistent with our goals.   

Consider the following example. 
 
8.4.3. Example | Impact of educational programs 
 
Lauer et al. (2006)   looked at the impact of educational programs that were 
offered to at-risk students outside of the usual school hours.  Figure 16 shows 
the studies in the analysis, sorted by effect size from low to high.  The 
researchers ran the analysis using both models.  The summary effect size 
under random effects [B] is 0.170, and under fixed effect [A] is 0.089.  So, 
when we move to the fixed-effect model the effect size drops by roughly 50%. 
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When we shifted from random effects to fixed effects, a sequence of 
events was put into place.  Prominent among these, 

 
(1) The impact of small studies was minimized.  As a group, the fifteen 

smaller studies were assigned some 18 percent of the total weight under 
random effects but less than 4 percent of the weight under the fixed-effect 
model.   

(2) The impact of the three largest studies [F] was increased.  As a group, 
these three studies were assigned 21 percent of the weight under random 
effects (column E) but roughly 63 percent of the weight under fixed effect 
(column D). 

 
The intent of the sensitivity analysis had been to see how the results would 

change if we minimized the impact of the smaller studies.  For that purpose, 
we intended to implement (1), but we inadvertently also implemented (2).  
That is, not only did we assign less weight to the small studies, but we also 
recalibrated the weights among the large studies so that three of these 
dominate the analysis.  That had not been our intent.  

When we shifted to the fixed-effect model, the confidence interval width 
decreased from 16 points as indicated by line [B], to 6 points as indicated by 
line [A].  The narrow width makes sense if our intent was to make an inference 
only to the studies in the analysis.  It makes no sense if our intent was to make 
an inference to a larger universe of studies. 

An additional problem is that if we adopt the fixed-effect model we 
cannot address dispersion in effects.  As indicated by line [C], the effect size 
varies from −0.138 (a harmful effect) in some populations to +0.478 (a helpful 
effect) in others.  This is a critically important part of the analysis.  By 
contrast, if we switch to the fixed-effect model we need to assume that there 
is no dispersion in effects. 

In sum, while our intent in switching to the fixed-effect model is to 
minimize the impact of small studies, we also re-weight the large studies, alter 
the width of the confidence interval, relinquish our ability to discuss 
dispersion in effects, and change the null hypothesis being addressed by the 
test of significance. It makes sense for all these items to shift in unison based 
on the intended inference, as reflected in the choice of a statistical model.  If 
we want to make an inference to a wider universe, we want to implement none 
of these.  If we want to make an inference to the studies in the analysis, we 
want to implement all of these.  By contrast, if we want to assess the impact 
of the small studies, it makes more sense to isolate that issue and look at that 
issue alone.  Some ways of doing so are discussed in section 12.1. 
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There may be cases where a researcher really does intend to ask two 
distinct questions – one about the studies in the analysis and another about the 
universe of comparable studies.  In this case it would make sense to run a 
separate analysis for each question using the corresponding model.  However, 
these cases are relatively rare.  If we are pulling studies from the literature, 
we almost invariably intend to generalize to a wider universe, and so the 
random-effects model applies. 

 

 
 

Summary 

Some have recommended comparing the results for the fixed-effect model 
and the random-effects model as a kind of sensitivity analysis. 

The problem with this approach is that when we change models, we 
change an entire array of elements, including the weights assigned to all 
studies, the confidence-interval width, the ability to address heterogeneity 
in effects, and the null hypothesis addressed by the significance test. 

We take one approach to all these issues if we intend to limit our inference 
to the studies in the analysis, and adopt a fixed-effects model.  We take 
another approach to all these issues if we intend to make an inference to 
the universe of comparable studies, and adopt a random-effects model. 
We cannot modify one of these elements without also modifying the 
others. 
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8.5. Random-effects model is more conservative 
 
8.5.1. Mistake 

It is common for researchers to say that the random-effects model is more 
conservative than the fixed-effect model, because the random-effects model 
is less likely to yield a statistically significant result.  This belief stems from 
the fact that the random-effects model yields a larger standard error than the 
fixed-effect model.  However, this statement is misleading. 
 
8.5.2. Details 

It is true that the random-effects model is less likely to yield a statistically 
significant result than the fixed-effect model, but it is misleading to suggest 
that this makes the analysis more conservative.  To say that it is more 
conservative implies that both analyses are addressing the same question and 
giving different answers.  In fact, the two analyses are addressing different 
questions. 

The fixed-effect model allows us to estimate the mean effect size for the 
population included in the analysis.  The random-effects model allows us to 
estimate the mean effect size in the universe of comparable populations.  The 
standard error for this model is larger because it relates to the estimate of a 
different parameter.  To say that the random-effects model is more 
conservative than the fixed-effect model is analogous to saying that we need 
more time to go from New York to California than we need to go from New 
York to Boston.  This is (usually) true, but not relevant if our goal is to get to 
California. 
 
8.5.3. Example | Statin use and bladder cancer 

Zhang et al. (2013) used meta-analysis to synthesize data from eight studies 
that looked at the relationship between statin use and bladder cancer (Figure 
17).  They write “In the present meta-analysis, significant heterogeneity was 
observed among all studies ….  Therefore, a random-effect (sic) model, which 
provides a more conservative standard error and a larger confidence interval, 
was chosen over a fixed-effect model to determine the pooled RR (risk ratio) 
estimates in our meta-analysis.” 
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Figure 17 | Statin-use and bladder cancer | Risk ratio > 1 indicates increased risk 

 
The authors were correct to choose the random-effects model, but their 

suggestion that this model is more conservative is misleading for several 
reasons.  

The suggestion that the random-effects model is more conservative rests 
on the fact that the fixed-effect model [A] would allow us to reject the null 
hypothesis (p=0.002) whereas the random-effects model [B] would not allow 
us to reject the null hypothesis (p=0.190). 

The idea that we can classify one model as being more conservative than 
another might make sense if both models were addressing the same question, 
but one did so with a larger error term.  However, that is not the case here.  
The fixed-effect model tests the hypothesis that the intervention has no effect 
(on average) for the studies in the analysis, while the random-effects model 
tests the hypothesis that the intervention has no effect (on average) for the 
universe of comparable studies.  Rather than thinking of one model as being 
more conservative than the other, we should think of one as being appropriate 
for testing one null hypothesis and the other as appropriate for testing a 
different null hypothesis. 

Critically, the idea that we can think of a model as conservative based on 
whether or not it allows us to reject the null hypothesis assumes that the goal 
of the analysis is to test the null hypothesis.  That may be one of the goals, 
but an equally (or more) important goal is to assess heterogeneity in effects.  
The random-effects model allows us to do so, whereas the fixed-effect model 
does not.  In this example the prediction interval [C] is 0.553 to 2.572, 
suggesting that the use of statins may be associated with a 45% reduced risk 
in some populations, and a 257% higher risk in others. 
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8.5.4. Failure to reject the null hypothesis may not be conservative 

The idea that wider confidence intervals are more conservative depends on 
the goals of the analysis.  If a statistically significant effect would tell us that 
a treatment is helpful, it would be conservative to require a higher standard of 
proof (based on wider confidence intervals).  However, if a statistically 
significant effect would tell us that a treatment is harmful, it would be 
conservative to require a lesser standard of proof (based on more narrow 
confidence intervals).  In the current example a significant difference would 
tell us that the treatment could be associated with increased risk of cancer, 
and so the random-effects model could be seen as anti-conservative.   
 
8.5.5. Random-effects model may not be conservative 

The common wisdom that the random-effects model is more conservative 
hinges on the fact that this model will yield a wider confidence interval than 
the fixed-effect model (assuming T2 is non-zero).  Since the confidence 
interval is wider under random effects, for any given effect size the 
confidence interval is more likely to include the null effect (and we are less 
likely to reject the null hypothesis). 

While the common wisdom is true on average, it does not apply in every 
case.  The key lies in the phrase for any given effect size in the prior paragraph.  
If the effect size is the same under both models, then we are more likely to 
reject the null hypothesis under random effects.  However, the effect size is 
generally not the same under both models.  It may be substantially smaller or 
greater under the random-effects model.  If the effect size happens to be 
substantially greater under the random-effects model, we might reject the null 
hypothesis under the random-effects model even when we do not reject it 
under the fixed-effect model. 

The following example is a case in point. 
 
8.5.6. Example | Water chlorination and cancer  

Figure 18 shows the results of a meta-analysis as computed by Poole and 
Greenland (1999) based on data reported by Morris (1995).   The studies in 
the analysis are epidemiologic studies on the relation of water chlorination to 
rectal cancer.  A risk ratio greater than 1.0 indicates that water chlorination 
was associated with increased risk of cancer. 
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Figure 18 | Chlorination and Cancer | Risk ratio > 1 shows increased risk 

 
For a fixed-effect analysis [A] the risk ratio is 1.064 with a confidence 

interval of 0.993 to 1.139.  A test of the null hypothesis yields a Z-value of 
1.761 and p-value of 0.078.  For a random-effects analysis [B] the risk ratio 
is 1.376 with a confidence interval of 1.012 to 1.869.  A test of the null 
hypothesis yields a Z-value of 2.039 and p-value of 0.041. 

In this example the standard error of the effect size is substantially larger 
under random effects, which is what researchers have in mind when they 
assert that this model is more conservative.  However, it is also possible (as 
was true in this example) that the effect size will be further from the null value 
under the random-effects model.  Here, the random-effects results would lead 
us to reject the null hypothesis while the fixed-effect results would not.   
 Poole and Greenland (1999)  cite this study to make the same point being 
made here.  They also note that since these studies are observational, a causal 
relationship between chlorination and cancer should not be assumed. 
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Summary 

The concept of conservative vs. anti-conservative focuses attention on the 
mean effect size.  However, when the effect size varies, our attention 
should be focused also on the dispersion in effects.  A key advantage of 
the random-effects model is that it allows us to take account of this 
dispersion. 

As a separate issue, it is misleading to refer to the statistical models as 
being more conservative or less conservative.  What really matters is 
which model yields the correct confidence interval for the intended 
inference.  If all studies are based on the same population (or if we want 
to make an inference only to the studies included in the analysis), one 
confidence interval is correct.  If we want to make an inference to the 
universe of comparable studies, a different confidence interval is correct. 
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8.6. Fixed-effect model has better statistical power 
 
8.6.1. Mistake 

Statistical power is the likelihood that an analysis will yield a statistically 
significant effect, allowing us to reject the null hypothesis of no effect.  It is 
common for researchers to say that they have elected to use the fixed-effect 
model because it has better statistical power than the random-effects model.  
This is misleading. 
 
8.6.2. Details 

This is a variant of issue addressed in section 8.5.  It is technically true that 
the fixed-effect model has better statistical power than the random-effects 
model, but this is irrelevant to the issue at hand.  If we had two analyses that 
were estimating the same parameter and one did so with better precision (and 
better statistical power) than the other, we would want to use the more 
powerful test.  However, that is not what is happening here. 

If we use the fixed-effect model we are testing the null hypothesis that 
the common effect size for the one population included in the analysis is zero.  
Similarly, if we use the fixed-effects model we are testing the null hypothesis 
that the mean effect size for the specific studies included in the analysis is 
zero.  By contrast, if we use the random-effects model we are testing the null 
hypothesis that the mean effect size in the universe of comparable populations 
is zero. 

Typically, we want to address the null hypothesis about the universe of 
comparable studies, and the power for addressing that question is what 
matters.  The fact that the power to address another question might be higher, 
is simply not relevant. 

Summary 

The fixed-effect model tests the null hypothesis that the effect size for the 
one population in the analysis is zero. The fixed-effects model tests the 
null hypothesis that the mean effect size for the specific studies in the 
analysis is zero.  The random-effects model tests the null hypothesis that 
the mean effect size for the universe of comparable studies is zero.  We 
need to decide which null hypothesis we intend to test, and then use the 
corresponding model. 
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8.7. When τ2 is estimated as zero 
 
8.7.1. Mistake 

When the between-study variance (τ2) is estimated as zero, the fixed-effect 
model and the random-effects model will yield identical estimates for all 
statistics.  When this happens, researchers sometimes report that they are 
using the fixed-effect model.  This is a mistake. 
 
8.7.2. Details 

In this discussion I will use τ2 to refer to the true value of the between-study 
variance, and T2 to refer to the estimate of this value.  Both are pronounced 
tau squared. 

Under the fixed-effect model, the weight assigned to each study is 
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where Wi is the weight for study i and Vi is the error variance for study i.  
Under the random-effects model, the weight assigned to each study is 
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where T2 is the estimate of the between-study variance.  It follows that when 
T2 is zero, the two formulas will yield the same results. 

When a researcher has adopted the random-effects model, but then 
discovers that T2 is zero and the results are identical to the fixed-effect model, 
the researcher will sometimes assert that they have switched to the fixed-
effect model.  There are two ways of interpreting this statement, but in either 
case the idea that they had switched to the fixed-effect model is incorrect. 

When the researcher says that they have switched to the fixed-effect 
model they may mean that their results match the results from the fixed-effect 
model.  While it is true that the results of the random-effects analysis are the 
same as those from the fixed-effect analysis, this does not mean that they have 
changed to another model.  They are still using the random-effects model.  It 
just so happens that the fixed-effect model will yield the same result. 

Alternatively, when the researcher says that they have switched to the 
fixed-effect model, they might mean that if τ2 is zero, then (by definition) all 
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studies are estimating the same parameter, and so the fixed-effect model 
applies.  This is a more sophisticated view, but also incorrect.  If the between-
study variance (the true value of τ2) was actually zero, then this argument 
would be valid.  But, when we are working with studies that assess the impact 
of an intervention and the studies are pulled from the literature, the true value 
of τ2 is likely to be positive even if the estimate is zero.  Therefore, the 
assumption that we are working with multiple populations remains intact. 

 
8.7.3. What difference does it make?   
 
If the numbers are the same under both models, what does it matter if we say 
we are using the fixed-effect model or the random-effects model?  It matters 
because the model determines how we can generalize the results.  

If we are using the random-effects model we can generalize the results 
to the universe of comparable studies, which had been (and should remain) 
our goal.  When τ2 is estimated as zero we would report the mean effect size, 
and would also report that the effect size is reasonably consistent across 
comparable populations.  By contrast, if we (incorrectly) switched to the 
fixed-effect model, then the results would be limited to the one population 
included in the analysis.  Then, we would not be able to generalize to a wider 
universe of populations, which had been the original goal.   

The following examples serve to illustrate this idea. 
 
8.7.4. Example | High-dose vs. standard-dose statins 
 
Cannon, Steinberg, Murphy, Mega, and Braunwald (2006) used a meta-
analysis to synthesize data from four studies that compared the impact of a 
high dose vs. a standard dose of statins in preventing cardiovascular events 
(Figure 19).  The mean risk ratio of 0.849 tells us that the high dose was more 
effective than the standard dose in preventing the events.   In this analysis, τ2 
was estimated as zero, as evidenced by the fact that the effect size and 
confidence interval are identical for both statistical models, [A] and [B]. 

The analysis employs the random-effects model, which allows us to 
generalize the results to comparable populations.  The fact that τ2 is estimated 
as zero tells us that the effect size may be reasonably consistent across these 
populations.  It would be a mistake to suggest that we have somehow switched 
to the fixed-effect model.  First, that would suggest that we are working with 
one population, which is not true.  Second, it would prevent us from 
generalizing to comparable populations, and thus subvert the intent of the 
analysis. 
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Figure 19 | High-dose vs. standard dose of statins | RR  < 1 favors high dose 

 
8.7.5. Example | Volunteer tutoring programs 
 
Ritter, Barnett, Denny, and Albin (2009) looked at the effectiveness of 
volunteer tutoring programs (Figure 20).  They write “The decision to use a 
fixed-effects model or random-effects model is based on the homogeneity 
analysis.  The analyses of the overall effects and of the six key outcomes 
revealed Q statistics that were not large enough to allow us to reject the null 
hypothesis of homogeneity.  That is, the variability across effect sizes did not 
exceed what would be expected based on sampling error (Lipsey & Wilson, 
2001).  Therefore, we employed a fixed-effects model for data synthesis in 
our study.” 

As always, the statistical model should reflect our goals for the 
systematic review.  It is something that we establish as part of the protocol, 
not something that we look for in the data.  Since the studies are based on 
multiple populations, and vary in other material ways, we can assume that the 
effect size varies across studies, and we should be using the random-effects 
model rather than the fixed-effect model.  Critically, the random-effects 
model also allows us to generalize to comparable populations.  

As it happens, in this analysis the estimate of the between-study variance 
(T2) is zero.  Therefore, the fixed-effect model and the random-effects model 
yield precisely the same numbers.  However, the meaning of the numbers 
depends on the model. 
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Figure 20 | Volunteer tutoring programs | Effect size > 0 favors programs 

 
Under the fixed-effect model we would report that the mean effect size 

for this one population is 0.299 with a confidence interval of 0.177 to 0.421.  
This is a bit awkward since it is not clear what “this population” represents.  
And, we could not extrapolate from this population to any others. 

Under the random-effects model we assume that these studies are 
representative of a universe of comparable studies.  In that universe of studies, 
the mean effect size is 0.299 with a confidence interval of 0.177 to 0.421. We 
do not need to explain what this one population is, since we acknowledge that 
we are working with multiple populations.  And we can extrapolate from these 
populations to the universe of comparable populations, which is almost 
invariably our intent. 
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Summary 

The statistical model is not simply an issue of numbers.  Rather, it reflects 
the intended inference, and provides a framework for understanding the 
results.  If the studies in the analysis will be used to make an inference to 
a larger group of comparable studies, the random-effects model reflects 
this goal.  The fact that a different model would have yielded the same 
numbers is irrelevant. 
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8.8. Switching models will have major impact on results 
 
8.8.1. Mistake 

Researchers sometimes assume that the decision to use one model or the other 
will have a major impact of the results.  The reality is more nuanced. 
 
8.8.2. Details 

Researchers often prefer the fixed-effect model because it yields better power 
than the random-effects model (Rice et al., 2017).   Their logic takes the form 
of “I would rather use the fixed-effect model because it has much better power 
than the random-effects model.  It would be a shame to apply the random-
effects model to address a small amount of between-study variance, since this 
will have a major impact on the test of the main effect.  So, I will assert that 
the between-study variance is zero and stay with the fixed-effect model.” 

Implicit in this idea is the assumption that if we use random effects rather 
than fixed effect, there will be a substantial change in the results.  Therefore, 
it may be useful to point out that the switch from fixed to random does not 
automatically result in a major loss of power or substantially wider confidence 
intervals.  Rather, the difference depends on the between-study variance and 
the number of studies.  In cases where the between-study variance is estimated 
as zero, the results of the random-effects analysis will be identical to those of 
the fixed-effect model, and so there is no loss of statistical power.  When the 
variance is estimated as relatively trivial, the confidence interval under the 
random-effects model will expand slightly, and the likelihood of rejecting the 
null hypothesis will change only slightly. 

It is only as the between-study variance becomes substantially larger that 
the confidence interval expands substantially, and the likelihood of rejecting 
the null hypothesis changes markedly.  However, in these cases the researcher 
should recognize that using the fixed-effect model would be a serious mistake, 
and so the idea of staying with this model is especially problematic. 

An important exception to this rule is when there are only a few studies 
and the analysis includes the Knapp-Hartung-Sidik-Jonkman adjustment (see 
section 7.5).  This will substantially increase the width of the confidence 
interval and substantially decrease the likelihood of the rejecting the null 
hypothesis of no effect.   
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To be clear, I am not suggesting that it would ever be acceptable to use 
the fixed-effect model because it yields better power.  As discussed in section 
8.6, this should not be a consideration when choosing a model.  Rather, in 
recognition of the fact that some researchers do make that argument, my goal 
here is point out that the use of the random-effects model may not have as 
much of an impact as they fear. 

 

Summary 

Researchers are sometimes reluctant to use the random-effects model 
because that are concerned that it will substantially decrease the power for 
testing the null hypothesis.  This is not necessarily the case, since the 
impact of the model on the standard error depends on a number of factors. 
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8.9. Meta-analyses with large N will have good power 
 
8.9.1. Mistake 

There is a common belief that all meta-analyses have excellent statistical 
power to test the null hypothesis of no effect.  The reality is more complicated. 
 
8.9.2. Details 

Statistical power is the likelihood that a study will yield a statistically 
significant result.  For example, we might say that “If the treatment boosts the 
mean score by 10 points, the study has power of 90% to reject the null 
hypothesis”.  Power is a function of the size of the effect, the criterion alpha, 
and the precision of the estimate. 

In the case where we use the fixed-effect model or the fixed-effects 
model, the precision of the estimate is given by 

 

 M
VSE
N

= , (3) 

where V is the within-study population variance and N is the sample size 
accumulated across studies.  In these cases, power will tend to be high.  
However, these are generally not the statistical models we should be using.  
By contrast, in a case where we use the random-effects model, the precision 
of the estimate is given by 
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where T2 is the estimate of the between-study variance and k is the number of 
studies.   

The mistake that researchers make is to assume that increasing N will 
increase the precision of the estimate.  However, it should be clear from this 
equation that this assumption is incorrect.  There are two terms under the 
radical, and they operate independently of each other.  Increasing the N will 
affect the first term, but have no impact on the second.  If T2 is non-zero, the 
only way to reduce this component of the error term is to increase the number 
of studies.  If the number of studies is low and T2 is non-trivial, then power 
can remain low, no matter how large N might be. 
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The formulas presented here are conceptual only since they require that 
V is the same for all studies.  For more information see Appendix II. 

 

 

 

 

Summary 

Under the random-effects model, statistical power is usually driven by the 
number of studies, not the number of people.  When the between-study 
variance is substantial, the only way to get good power will usually be to 
include a large number of studies. 
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8.10. Putting it all together 

The choice of a statistical model should be based on the issues discussed in 
section 7.  However, since researchers sometimes make a decision based on 
other issues, I addressed these issues here. 

Researchers sometimes suggest that it would be preferable to use the 
fixed-effect model since this assigns less weight to small studies, and these 
studies are assumed to be of poor quality.  This is generally a bad idea for two 
reasons.  First, we should not assume that poor studies are of poor quality.  
Second, when we change the weights, we change the estimate not only of the 
mean, but also of the confidence interval, p-value, and other statistics, in ways 
that we may not anticipate.  

Researchers sometimes perform an analysis using both models to see if 
the results shift.  It is not always clear what purpose this serves.  The fixed-
effects model yields information about the specific studies included in the 
analysis, while the random-effects model yields information about the 
universe of comparable studies.  If we care about one question, it is not clear 
why we would want to know the answer to the other. 

Some researchers suggest that they prefer to use the fixed-effects model 
because it has better statistical power than the random-effects model.  There 
is a reason that the fixed-effects model has better power – that is because it is 
estimating the mean for the studies in the analysis, and not for the universe of 
comparable studies.  The idea that we can take a model which addresses a 
different question and apply it to our question is simply incorrect. 

The common theme in all these issues is that they are based on a 
misunderstanding of the role of the model.  If we intend to make an inference 
about the one population included in the analysis, we adopt a set of weights 
which make sense for this goal. If we intend to make an inference about the 
specific studies included in the analysis but not generalize to any other 
studies, we adopt a set of weights which make sense for this goal.  If we intend 
to make an inference about the universe of studies which are comparable to 
those in the analysis, we adopt a set of weights which make sense for this 
goal.  This is all captured by the model, and affects the estimate of the mean, 
the width of the confidence interval, the null hypothesis being tested, and what 
we can say about dispersion in effects.  In all cases we need to know the 
estimates for our intended inference. The fact that the estimates for another 
inference are different, is not relevant. 

  


