
 

12. MISTAKES IN SUBGROUP ANALYSES 
 
12.1. Overview 
 
Consider a meta-analysis where the studies can be classified as belonging to 
two or more subgroups.  We might want to compute the effect size within 
each subgroup, and then compare these different effect sizes.  Immediately 
below, I present an example of such an analysis.  In the balance of the chapter, 
I discuss various parts of the analysis, highlighting common mistakes. 
 
12.1.1. Example | Drugs for weight-loss 
 
Padwal, Li, and Lau (2003)  performed an analysis of studies to assess the 
utility of drugs to help patients lose weight (see also (Borenstein & Higgins, 
2013)).   In each study, patients were randomly assigned to either the drug or 
placebo, and the researchers recorded the proportion of patients in each group 
who succeeded in meeting their weight-loss goal within the study’s 
timeframe.   

The effect size is the risk difference.  A mean risk difference of 0.24 
would tell us that the treatment increased the likelihood of success by 0.24.  
For example, in a population where the control group had a success rate of 
0.40, the treated group would have a success rate of 0.64. 

In Figure 68, the studies have been separated into two subgroups.  The 
first set of studies compared Orlistat vs. placebo, and for this subgroup the 
mean effect size is a difference of 0.213 [B1].  The second set of studies 
compared Sibutramine vs. placebo, and for this subgroup the mean effect size 
is a difference of 0.320 [B2].  The difference between subgroups is 0.108 with 
a 95% confidence interval of 0.047 to 0.168 (see Appendix IX). In round 
numbers, the difference in group means is at least 0.05 and possibly as much 
as 0.17.  A test of the null hypothesis (that the mean effect size is the same in 
both subgroups) yields a Q-value of 12.098 with 1 degree of freedom and a 
corresponding p-value of < 0.001. 
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We can use this to assess the impact of Orlistat vs. placebo, to assess the 
impact of Sibutramine vs. placebo, and to compare the effect size in the first 
set of studies vs. the effect size in the second set of studies.  However, the 
analysis must be performed correctly, and there are important limitations on 
what conclusions we can reach.   
 
On the pages that follow, I address various issues including the following 

 
• Researchers sometimes assume that a difference between subgroups is 

evidence of a causal link.  In fact, the difference is observational, not 
causal. 

• Researchers sometimes adopt the fixed-effect model for comparing 
subgroups.  The correct model is the mixed-effects model. 

• Researchers sometimes employ a separate estimate of T2 for each 
subgroup.  This is generally a mistake. 
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12.2. Assuming a causal relationship 
 
12.2.1. Mistake 

In the weight-loss example, the difference between subgroups is both 
clinically important and statistically significant.  On that basis, some would 
conclude that Sibutramine is more effective than Orlistat.  In fact, that 
conclusion is not supported by the data.  
 
12.2.2. Details 

In the weight-loss example, the difference between subgroups is both 
clinically important and statistically significant.  On that basis, 

A. We can conclude that effect of treatment was larger in the Sibutramine 
studies than in the Orlistat studies.   

B. We cannot conclude that Sibutramine is more effective than placebo.   
 
The difference between A and B may not be obvious, but is nevertheless 

critically important.  It reflects the fact that the relationship between subgroup 
membership and effect size is observational, not causal. 

The logic here is the same as it would be in a primary study.  In a primary 
study, if we randomize patients to be treated with either Sibutramine or 
Orlistat and then find the difference between groups is statistically significant 
in favor of Sibutramine, we would conclude that Sibutramine was more 
effective.  By contrast, if we located people who had elected to take either 
drug, and then found that those taking Sibutramine had a better outcome, we 
would recognize that the difference could be due to the drug but could also be 
due to a confound.  For example, people who elected to use Sibutramine might 
tend to be younger, and the reason that the effect is larger in the Sibutramine 
subgroup could be the fact that younger people are more likely to lose weight 
than older people.  We chose to label the groups as Sibutramine vs. Orlistat, 
but the more relevant label could be Young vs. Old. 

The same idea applies to the comparison of subgroups in a meta-analysis.  
The test for statistical significance tells us that the Sibutramine subgroup did 
better than the Orlistat subgroup.  The difference could be due to the fact that 
Sibutramine is more effective than Orlistat, but could also be due to a 
confound.  For example, the studies that compared Sibutramine vs. placebo 
might have enrolled younger patients, and age could be an important factor.  
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We chose to label the subgroups as Sibutramine vs. Orlistat, but the more 
relevant label could be Young vs. Old. 

Critically, this is true even though every one of the studies was a 
randomized controlled trial.  This is because the randomization took place 
within studies, not between studies.  We can conclude that the drug is more 
effective than placebo because patients were randomized to either drug or a 
placebo.  However, the choice of Orlistat vs. Sibutramine was not based on 
random assignment, and therefore the better performance in the second 
subgroup does not prove that Sibutramine is more effective than Orlistat.  The 
only exception would be if all the studies had been set up in advance by a 
consortium of researchers, and each study site was randomly assigned to use 
one drug or the other. 

An additional example should help to illustrate this point. 
 
12.2.3. Example | Impact of caffeine on pain 
 
Derry, Derry, and Moore (2014) looked at the use of caffeine to relieve certain 
types of pain.  In all studies, patients were treated with a pain medication and 
then (additionally) randomly assigned to receive either caffeine or a placebo 
(Figure 69).  Researchers recorded the proportion of patients in each group 
who felt some improvement within thirty minutes.  The mean risk ratio over 
all studies is 1.127, which tells us that (on average) caffeine increased the 
likelihood of a response by around 13%. 

As noted, the caffeine (or placebo) was administered in addition to a pain 
medication.  In one subgroup of studies the pain medication was Ibuprofen 
(name brands include Advil, Motrin, and Nuprin).  In another subgroup of 
studies, the pain medication was Paracetamol (name brands include Tylenol 
and Panadol). 

In the Ibuprofen subgroup, caffeine increased the likelihood of response 
by 29% as compared with placebo [B1].  By contrast, in the Paracetamol 
subgroup, caffeine increased the likelihood of response by only 11% as 
compared with placebo [B2].  The ratio of the two effects (1.111/1.294) is 
0.859 with a 95% confidence interval of 0.737 to 1.000 (see Appendix IX). 
We estimate that caffeine is 14% less effective in the paracetamol subgroup 
as compared with the ibuprofen subgroup, but the actual difference could be 
as high as 26% or as low as 0% (see Appendix IX). Alternatively, we can test 
the null hypothesis that the impact of caffeine is identical in the two 
subgroups.  A test of this null hypothesis yields a Q- value of 3.819, with 1 
degree of freedom and a corresponding p-value of 0.051.  In this discussion, 
I will consider this to be statistically significant. 
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Based on the logic outlined above, we report that the caffeine is more 
effective in the first subgroup.  However, we cannot conclude that this is a 
causal relationship based on the use of Paracetamol vs. Ibuprofen.  Rather, 
the fact that the effect is stronger in one subgroup could be due to some other 
difference between the subgroups. 

Indeed, the data suggest two potential confounds.  In the Paracetamol 
subgroup, three of the eight studies were performed by McQuay, and these 
studies yielded the highest effect sizes.  In the Ibuprofen subgroup, eleven of 
the fifteen studies were performed by Laska.  It is possible that McQuay 
tended to enroll patients who were more likely to benefit from caffeine, while 
Laska was less likely to enroll these patients.  We chose to call the subgroups 
Ibuprofen and Paracetamol, but the more relevant labels might be McQuay 
and Laska or Likely to Benefit and Unlikely to Benefit. 

Confounds can exist in any analysis, but are especially worrisome when 
we are dealing with small numbers of studies.  When there are many studies 
in each subgroup, confounds tend to be systematic – for example, it might be 
that studies with older patients tend to use one drug rather than another. In 
this case we may be able to identify potential confounds and look for them 
using regression or subgroup analyses.  By contrast, when there are only a few 
studies in the analysis we need to be concerned about systematic confounds 
and also random confounds.  If a subgroup labeled “Moderate Dose” includes 
only one or two studies, it is possible (indeed, likely) that these studies differ 
from studies in other subgroups in other ways, in addition to dose.  Typically, 
we will not know to look for these confounds, and in any event will not have 
sufficient data to use subgroup analysis or regression to assess their potential 
impact. 

 

Summary 

If all studies in the analysis are randomized controlled trials, the difference 
between the treated and control conditions can be attributed to the 
treatment.  However, the difference in effect size between subgroups 
cannot be attributed to any specific factor (such as the fact that each 
subgroup employed a different drug).  The difference between subgroups 
is observational, not causal. 
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12.3. Choosing a statistical model 
 
12.3.1. Mistake 

When working with subgroups, researchers sometimes apply the fixed-effect 
model within subgroups.  This is a mistake. 
 
12.3.2. Details 

In section 7, I discussed three statistical models for a simple analysis.  The 
random-effects model applies when the studies in the analysis will be used to 
make an inference to the universe of comparable studies.  The fixed-effect 
(singular) model applies when all studies are based on one population, and 
the results will apply only to this population.  The fixed-effects (plural) model 
applies when the studies are based on different populations, and our goal is to 
report the mean effect for these studies, but not to generalize to any wider 
universe. 

When we are working with subgroups, the choice of statistical models 
becomes a little more complicated.  Here, we must choose which statistical 
model applies within subgroups, and also which statistical model applies 
across subgroups.  The same criteria outlined above, apply here as well. 

Consider the weight-loss analysis shown in Figure 70.  There are 
fourteen studies that compared Orlistat vs. placebo and another eight that 
compare Sibutramine vs. placebo. 

If we see the fourteen Orlistat studies as representative of a universe of 
comparable studies, and we want to make an inference to that universe, then 
we should be using the random-effects model to estimate the mean effect size 
for this set.  Similarly, if we see the seven Sibutramine studies as 
representative of a universe of comparable studies, and we want to make an 
inference to that universe, then we should be using the random-effects model 
to estimate the mean effect size for this set. 

If we use the random-effects model, we will get an estimate of the mean 
effect size for the universe of studies that compare Orlistat vs. placebo (at the 
top) and we will get an estimate of the mean effect size for the universe of 
studies that compare Sibutramine vs. placebo (at the bottom).  When we 
compare the two means, this comparison will address the difference in the 
two universes. 
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By contrast, if we use the fixed-effects model, we will get an estimate of 
the mean effect size for the specific 14 studies that compare Orlistat vs. 
placebo (at the top) and we will get an estimate of  the mean effect size for 
the specific 8 studies that compare Sibutramine vs. placebo (at the bottom).  
When we compare the two means, this comparison will address the difference 
in these two specific sets of studies. 

When we are pulling studies from the literature, our intent is almost 
invariably the first rather than the second, and therefore we should be using 
the random-effects model within subgroups.  
 
12.3.3. Mixed-effects 
 
The studies within a subgroup are treated as random, but the subgroups are 
treated as fixed.  The use of the fixed model here is a source of confusion 
since most researchers assume that this model requires that all subgroups are 
identical to each other.  However, as explained earlier (section 1), we need to 
distinguish between the fixed-effect (singular) model and the fixed-effects 
(plural) model.  The former applies when all subgroups are identical to each 
other, which is obviously not the case here.  The latter applies when each 
subgroup is unique, and we care only about the subgroups included in the 
analysis.  This is the model that applies here.  That is, we will not be 
generalizing from Orlistat and Sibutramine to all possible drugs.  Rather, the 
results will apply to these two drugs specifically.  Since the model is random 
at one level and fixed at the other, it is called a mixed-effects model. 

In Figure 71, there are two sets of results.  Those at the top refer to the 
fixed-effect model while those at the bottom refer to the mixed-effects model. 

In the fixed-effect section the mean effect for the Orlistat subgroup is 
0.200 with a standard error of 0.010 and the mean effect for the Sibutramine 
subgroup is 0.319 with a standard error of 0.022. The line labeled Total 
Between addresses the difference between these two means.  The Q-value is 
23.532 with 1 degree of freedom, and a p-value of < 0.001.    

In the mixed-effects section the mean effect for the Orlistat subgroup is 
0.213 with a standard error of 0.015 and the mean effect for the Sibutramine 
subgroup is 0.320 with a standard error of 0.027.  The line labeled Total 
Between addresses the difference between these two means.  The Q-value is 
12.098 with 1 degree of freedom, and a p-value of 0.001 [A]. 

If our interest was limited to the twenty-one studies included in the 
analysis, we would use the fixed-effect section.  On the other hand, if we 
intend to generalize from these studies to all comparable studies (which we 
do) we should be using the mixed-effects section. Note that the standard errors 
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for the mixed-effects model are larger than those for fixed-effects model.  
Therefore, under the mixed-effects model, the confidence interval for the 
difference in means will be wider and the difference in means is less likely to 
be statistically significant.   

 

   

 

 

  

 

 

 

 

 

In CMA ™ (Comprehensive Meta-Analysis) the option to use Mixed-effects 
is set on the Analysis screen.  Choose Computational options > Mixed and 
random-effects options, to open a Dialog box (Figure 72).  At the bottom, 
select [Combine subgroups using fixed-effect model].  This refers to the fact 
that we intend to make an inference to these two subgroups (Orlistat and 
Sibutramine) only, and not generalize to a universe of other possible drugs. 

 

Summary 

When we perform a subgroups analysis, we should almost invariably be 
using a mixed-effects model.  This means that the subgroups are fixed, in 
the sense that these are the only subgroups of interest.  By contrast, the 
studies within a subgroup are random, in the sense that these studies are a 
random sample of comparable studies (at least in theory), and we will be 
generalizing to those studies.  Since the model is fixed at one level and 
random at the other, it is referred to as a mixed-effects model. 

Figure 72 | Recommended options in CMA 



     Mistakes in estimating T2 199 

12.4. Mistakes in estimating τ2 
 
12.4.1. Mistake 

When we are working with subgroups, the between-study variance (τ2) must 
be computed within subgroups.  Then, we have the option of using each 
estimate of τ2 for the corresponding subgroup, or of pooling all the estimates 
and using the pooled value for all subgroups.  Researchers sometimes choose 
the first option, but that is generally a bad idea. 
 
12.4.2. Details 

When we are working with subgroups, the between-study variance (τ2) must 
be computed within subgroups.  The reason is that τ2 represents the between-
study variance in the universe of interest, and this is the universe within the 
subgroup.  Another way to say this, is that τ2 is defined as the unexplained 
variance.  The variance between subgroups is explained by subgroup 
membership, and therefore must be excluded from the computation of T2.  It 
is only the variance within subgroups that remains unexplained. 

After we have estimated τ2 within subgroups, we have two options.  One 
is to use the estimate computed within each subgroup for that subgroup.  The 
other is to pool the estimates, and use the pooled value for all subgroups. 

In the weight-loss example (Figure 73), τ2 is estimated as 0.0017 [D1] 
for the Orlistat studies, and as 0.0003 [D2] for the Sibutramine studies.  The 
pooled estimate is 0.0014.  If we use the separate estimates, we are saying that 
the between-study variance in the first set of studies is 0.0017 while the 
between-study variance in the second set of studies is 0.0003.  By contrast, if 
we use the pooled estimate, we are saying that the between-study variance is 
0.0014 in each set of studies.  The formula for pooling estimates is given in 
Appendix X. 

The argument for using separate estimates is that the variance between 
studies is unique to each subgroup.  However, if we want to estimate τ2 within 
subgroups we need to have a reasonable number of studies within each 
subgroup.  When we use a unique estimate for each subgroup based on a small 
number of studies, each estimate will be very unreliable.  The damage caused 
by estimating τ2 based on a small number of studies is likely to be much larger 
than the damage caused by pooling estimates when the underlying values are 
different. 
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The extreme example is the case where a subgroup includes only one 
study.  Without pooling, the between-study variance for these subgroups is 
estimated as zero, which is obviously incorrect.  If one then proceeds to 
compare subgroups, the incorrect standard error will be used in those 
comparisons, and these comparisons will be incorrect. 

The default position should be to pool the estimates of τ2 across 
subgroups.  The option to use separate estimates should only be considered if 
there is good reason to believe that τ2 differs substantially from one subgroup 
to the next, and additionally we have a good number of studies within each 
subgroup.   

I have deliberately been vague about how many studies we need to get a 
reliable estimate of τ2, since (a) there are no standards and (b) the number will 
vary from one analysis to the next.  I would suggest that one should never 
consider using separate estimates unless we have at least ten studies in each 
subgroup, and that twenty studies would be a better minimum.  To be clear, 
there is no consensus on these numbers, and I am only trying to provide a 
sense of scale. 

In CMA ™ (Comprehensive Meta-Analysis) this option is set on the 
Analysis screen.  Choose Computational options > Mixed and random-effects 
options, to open a Dialog box (Figure 74).  At the top, select [Assume a 
common among-study variance component across subgroups (pool within-
group estimates of tau-squared)]. 

 
Figure 74 | Combining studies within a subgroup (Top) 

Option to pool estimates of T2 
  



202 MISTAKES IN SUBGROUP ANALYSES  

Note. 

In this discussion I have assumed that the analyst computes T2 within 
subgroups, and explored the option of pooling (or not).  Some papers have 
published analyses where T2 is computed across all studies (not within 
subgroups).  It would be hard to justify this approach. 

 

 

Summary 

When we work with subgroups, the estimate of T2 should always be 
computed within subgroups.  In the vast majority of cases, it should then 
be pooled across subgroups, with the pooled estimate applied to all 
subgroups. 
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12.5. Comparing the effect size in different subgroups 
 
12.5.1. Mistake 

When we are working with two (or more) subgroups, we generally want to 
see if the effect size is larger in some subgroups than in others.  The correct 
way to approach this is to perform a significance test and/or estimate the 
magnitude of the difference with its confidence interval.  Researchers 
sometimes use other approaches, which is a mistake. 
 
12.5.2. Details 
 
If the effect size is statistically significant for one subgroup but not another, 
researchers sometimes assume that the difference between groups must be 
statistically significant.  This is incorrect.  It is possible for the effect size to 
be identical in both subgroups, but statistically significant in one subgroup 
but not the other because one subgroup includes more studies, larger studies, 
and/or a more homogeneous set of effects.     

Conversely, if the confidence interval for the mean in one subgroup 
overlaps the confidence interval for the other subgroup, researchers 
sometimes assume that the difference between groups cannot be statistically 
significant.  Again, this is a mistake.  It is possible for the difference between 
subgroups to be statistically significant even if the confidence intervals have 
some overlap with each other. 

Therefore, in both cases, we need to perform the appropriate analysis to 
determine whether the difference between subgroups is statistically 
significant.   

There are two basic approaches we can take here.  One is to test the 
difference for statistical significance.  The other is to compute the difference 
and its confidence interval.  The advantage and disadvantage of either 
approach are the same here as discussed for the main effect in section 10.1.2 
and section 10.1.3.  The significance test should be used when our goal is to 
test the null hypothesis, which may be the case in a legal context.  By contrast, 
effect size estimation provides an estimate of the difference between groups, 
which is generally what we care about. 

Note that these analyses may have low statistical power.  Therefore, if 
the difference between subgroups is not statistically significant (and/or the 
confidence interval for the difference includes zero), we cannot conclude that 
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the effect size in the different subgroups is comparable (Hedges & Pigott, 
2001, 2004) 

Below, I provide examples of both approaches. 
 

12.5.3. Weight loss 
 
In the weight-loss example (Figure 75) the difference in effect sizes is 
displayed in the section labeled “Mixed-effects analysis” on the line labeled 
“Total between”.  The Q-value for the difference is 12.098 with 1 degree of 
freedom and a p-value of 0.001 [A].  We conclude that the effect size for the 
Sibutramine studies (0.320) is significantly higher than the effect size for the 
Orlistat studies (0.213).  

The line “Total between” is an omnibus test that asks if there are any 
differences among the subgroups.  In this example there are only two 
subgroups, so the “omnibus” test is also a pairwise test.  If there were three or 
more groups, we would also do pairwise comparisons to test the difference 
between any two groups (see Appendix IX). 

In addition to testing the difference between subgroups for statistical 
significance, it is also important to report the magnitude of the difference 
along with the corresponding confidence interval. 

For Orlistat vs. placebo, the mean effect size is 0.213.  For Sibutramine 
vs. placebo the mean effect size is 0.320.  When we are working with a risk 
difference (as we are here) the difference between subgroups is simply the 
difference in effect sizes.  Here, that difference is 0.108 with a 95% 
confidence interval of 0.047 to 0.168.  In round numbers, the difference in the 
effect size is at least 0.05 and possibly as much as 0.17. The formula for 
computing the confidence interval is given in Appendix IX. 

 
12.5.4. Caffeine  
 
In the caffeine example (Figure 76) the difference in effect sizes is displayed 
in the section labeled “Mixed-effects analysis” on the line labeled “Total 
between”.  The Q-value for the difference is 3.819 with 1 degree of freedom 
and a p-value of 0.051 [A].  If we accept 0.051 as meeting the criterion for 
statistical significance, we conclude that the effect size for the Ibuprofen 
studies (1.294) is significantly higher than the effect size for the Paracetamol 
studies (1.111). 

The line “Total between” is an omnibus test that asks if there are any 
differences among the subgroups.  In this example there are only two 
subgroups, so the “omnibus” test is also a pairwise test.  If there were three or 
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more groups, we would also do pairwise comparisons to test the difference 
between any two groups (see Appendix IX). 

In addition to testing the difference between subgroups for statistical 
significance, it is also important to report the magnitude of the difference 
along with the corresponding confidence interval. 

In the Ibuprofen subgroup, caffeine increased the likelihood of response 
by 29% as compared with placebo [B1].  In the Paracetamol subgroup, 
caffeine increased the likelihood of response by only 11% as compared with 
placebo [B2].  When we are working with a risk ratio (as we are here) the 
magnitude of the group difference is the ratio of the two effects.  The ratio of 
the two effects (1.11/1.29) is 0.859 with a 95% confidence interval of 0.737 
to 1.000.  We estimate that caffeine is 14% less effective in the paracetamol 
subgroup as compared with the ibuprofen subgroup, but the actual mean ratio 
could be as high as 26% or as low as 0%.  The formula for computing the 
confidence interval is given in Appendix IX. 
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Summary 

If we want to compare the effect size in two subgroups, we need to 
actually run a test of statistical significance.  We should also estimate the 
magnitude of the difference, with the corresponding confidence interval.  
These analyses should be based on the mixed-effects model rather than 
the fixed-effects model. 
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12.6. Reporting an overall effect size in the presence of 
subgroups 

 
12.6.1. Mistake 

When the analysis includes two or more subgroups, researchers typically 
report the mean effect size for each subgroup, and also the mean effect size 
across subgroups.  We need to understand what the overall mean represents.  
Sometimes, it will not be appropriate to report this statistic. 
 
12.6.2. Details 

The overall mean is a weighted mean of the effect size in all subgroups.  
As such, more weight will be assigned to subgroups that have a more precise 
estimate of the mean effect size.  In general, a subgroup with more studies 
will tend to get more weight in the estimate of the overall mean. 

In our analysis there are more studies that used Orlistat and fewer that 
used Sibutramine.  When we compute the overall effect size, the Orlistat 
studies get 76% of the weight while the Sibutramine studies get 24% of the 
weight.  The mean effect size for Orlistat was 0.213 and the mean effect size 
for Sibutramine was 0.320.  The overall effect size is reported as 0.238, and 
as such is clearly being pulled by the Orlistat studies. 

What does this overall mean represent?  It tells us the mean effect size in 
this sample of studies, but that is only relevant if this sample is representative 
of some universe.  For example, if Orlistat was the drug of choice for 76% of 
all hospitals, and Sibutramine was the drug of choice for 24% of all hospitals, 
then the overall effect size in our analysis would reflect the overall effect size 
for the universe of all hospitals.  However, that is probably not the case.  The 
ratio of 76 to 24 probably does not represent a meaningful universe, and so 
the number is not terribly informative.  Therefore, we may choose not to 
report the overall mean.  If we do report it, we should be clear that the estimate 
is based on a weighted mean of the subgroups. 

It should be noted that this is simply a special case of the issue outlined 
earlier for simple analyses (7.4.6).  That is, if we had simply reported the mean 
for all studies as a simple analysis (without subgroups) that mean would also 
reflect the mix of populations in the analysis, which favors the Orlistat studies.   

The difference between the simple case and this one is that if we want to 
predict the mean in the simple case, the best prediction we can make is the 
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overall mean.  By contrast, when we have subgroups, we can predict the effect 
size for any study more accurately by using the mean for that subgroup. 

 
 

 

Summary 

When the analysis includes subgroups, the overall mean is a weighted 
combination of the subgroup means, and may be dominated by subgroups 
with more studies.  Therefore, we may elect to report the means for the 
subgroups only, and hide the overall mean. 

This is a special case of a more general issue.  The mean effect will always 
depend on the particular mix of studies included in that analysis.  If most 
studies come from one subgroup, that subgroup will dominate the analysis 
even if we perform a simple analysis without subgrouping. 
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12.7. Putting it all together 

One of the key strengths of a meta-analysis is that it enables us to see how the 
effect size differs from one subgroup of studies to the next.  However, it is 
imperative that we understand the limits of this tool and employ the correct 
statistical formulas. 

To report that the mean effect size is higher in one subgroup of studies 
than another, it is not sufficient to know that the main effect met the criterion 
for statistical significance in one subgroup and not the other.  Rather, we need 
to conduct a test of statistical significance for the difference in effects, and/or 
compute the difference in effects with confidence intervals.   

If the difference between subgroups is statistically significant, we need 
to understand that this difference is observational, not causal.  We can say that 
the mean effect size is higher in one subgroup, but we cannot say that the 
difference is due to the variable that we have used to name the subgroup, such 
as “Drug-A” vs. “Drug-B”.  While it is possible that the named variable is 
responsible for the difference, it is also possible that the difference is due to 
some other variable.  For example, the researchers who tested Drug-A may 
have enrolled primarily younger patients, and it may be the impact of age, 
rather than drug, which is (primarily) responsible for the effect size in this 
subgroup.  Therefore, the results of this kind of analysis should not be seen as 
definitive.  Rather, they could be used to design additional primary studies, 
where the impact of drug can be tested properly. 

The problem of potential confounds is present even when we have a 
substantial number of studies in each subgroup, since there may be a 
systematic relationship between the confound and our variable of interest.  For 
example, if researchers who test Drug-A tend to enroll younger patients, this 
confound will exist even if we have many studies within each subgroup.  
When we have only a few studies within subgroups, we need to be concerned 
not only with systematic confounds, but also random confounds – the studies 
within a subgroup might differ from those in other subgroups on some 
important factors simply by chance. 

When the studies in the analysis are being pulled from the literature, the 
correct statistical model is almost invariably a mixed-effects model.  
Concretely, studies within a subgroup will be used to make an inference to 
the universe of comparable studies, so we use the random-effects model for 
studies within subgroups. However, we care only about the specific subgroups 
in the analysis and will not make an inference to other subgroups, so we use 
the fixed-effects model for subgroups.  Since the model is random at one level 
and fixed at the other, it is called a mixed-effects model. 
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Since we are using the random-effects model at one level and the fixed-effects 
model at another level, we are said to be using a mixed-effects model.   

When we are working with multiple subgroups, we need to estimate the 
value of τ2 within subgroups, but we then have the option of applying each 
estimate of τ2 to the corresponding subgroup or pooling the estimates and 
applying the pooled estimate to all subgroups.  One should always pool the 
estimates unless each subgroup has a substantial number of studies.  In the 
extreme case, when some subgroups have only one or two studies, this 
approach is imperative. 

 

 
 


